【math】利用Cardano方法对一元三次方程求解及python实现

2023-10-16 06:50

本文主要是介绍【math】利用Cardano方法对一元三次方程求解及python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 【参考】
    • 【问题描述】
      • 求解一元三次方程
    • 【代码实现】
      • 现成的包 cardano_method
      • 根据公式编写求解代码
    • 【总结】

【参考】

  • 用Cardano方法求解三次方程介绍
  • cardano方法求解
  • 下载cardano方法包
  • x^3+1=0求解问题、三次方程反函数问题
  • Micorsoft-Math-solver 微软数学工具
  • WolframAlpha: inverse of a function/反函数
  • 百度百科-一元三次方程求根公式

【问题描述】

求解一元三次方程

求解一元三次方程:
a x 3 + b x 2 + c x + d = 0 ax^3+bx^2+cx+d=0 ax3+bx2+cx+d=0

求解有多种方法,其中Cardano方法得到的解为:
在这里插入图片描述

一元三次多项式: y = f ( x ) = a x 3 + b x 2 + c x + d y=f(x)=ax^3+bx^2+cx+d y=f(x)=ax3+bx2+cx+d => a x 3 + b x 2 + c x + d − y = 0 ax^3+bx^2+cx+d-y=0 ax3+bx2+cx+dy=0

【代码实现】

现成的包 cardano_method

  • 可以使用python包:安装cardano_method 【参考这里】
    pip install cardano_method
    
    该包的使用:CubicEquation函数对应第一个参数列表是:[a, b, c, d],即求解方程的各系数。
    from cardano_method.cubic import CubicEquation
    a = CubicEquation([1, 3, 4, 4])
    print(a.answers)  # j表示虚部后缀
    # [(-2+0j), (-0.5+1.322875j), (-0.5-1.322875j)]
    print(a.answers[0].real)  # 获取第一个解的实部
    print(a.answers[0].imag)  # 获取第一个解的虚部
    
    但是发现一个问题:解方程 x 3 + 1 = 0 x^3+1=0 x3+1=0时,居然报错分母是0:ZeroDivisionError
    a = CubicEquation([1, 0, 0, 1])
    
    在这里插入图片描述
    但实际上, x 3 + 1 = 0 x^3+1=0 x3+1=0的解是对应: x 1 = − 1 x_1=-1 x1=1, x 2 = 1 2 + 3 2 i x_2=\frac{1}{2}+\frac{\sqrt{3}}{2}i x2=21+23 i, x 3 = 1 2 − 3 2 i x_3=\frac{1}{2}-\frac{\sqrt{3}}{2}i x3=2123 i(这里 i i i表示虚数)。需要详细看下包中bug如何解决?

根据公式编写求解代码

  1. 可以根据对应解的公式写出求解函数:【注意:关于浮点型计算有问题?】

    def cardano_solution_v0(a, b, c, d):ab = -b/float(3*a)q = (3*a*c-(b**2)) / (9*(a**2))r = (9*a*b*c-27*(a**2)*d-2*(b**3)) / (54*(a**3))delta_sqrt = (q**3+r**2)**(1.0/2)s = (r+delta_sqrt)**(1.0/3)t = (r-delta_sqrt)**(1.0/3)imag = complex(0, (s-t)*(3**(1.0/3))/2)x1 = s+t+abx2 = -(s+t)/2+ab+imagx3 = -(s+t)/2+ab-imagreturn x1, x2, x3
    

    测试修改保留浮点,还是有问题,跟cardano_method包的结果对不上???【注:cardano_solution_v0cardano_solution_v1都有问题,正确的解见下方函数:cardano_solution

    def round_ri(xo, n=4):xr, xi = round(xo.real, n), round(xo.imag, n)if xi == 0:return xrelse:return complex(xr, xi)def cardano_solution_v1(a, b, c, d):ab = -b/float(3*a)q = (3*a*c-(b**2)) / (9*(a**2))r = (9*a*b*c-27*(a**2)*d-2*(b**3)) / (54*(a**3))delta_sqrt = round((q**3+r**2)**(1.0/2), 4)# print("r, delta_sqrt:", r, delta_sqrt, round(r-delta_sqrt, 4))s = round((r+delta_sqrt)**(1.0/3), 8)t = round(r-delta_sqrt, 4)**(1.0/3)print("st,ab:", s, t, ab)imag = complex(0, (s-t)*(3**(1.0/3))/2)x1 = s+t+abx2 = -(s+t)/2+ab+imagx3 = -(s+t)/2+ab-imagreturn round_ri(x1), round_ri(x2), round_ri(x3)
    

    是公式本身写的有误?还是浮点/开根号问题?需要再检查。。。

  2. 测试其他公式: 百度百科-一元三次方程求根公式

    这里是说,一元三次方程的系数是复数时,用Cardano公式有问题(什么问题?),旧使用如下通用的求根公式:
    在这里插入图片描述在这里插入图片描述

    def cardano_solution(a, b, c, d):#u = round((9*a*b*c-27*(a**2)*d-2*(b**3)) / (54*(a**3)), 4)#v = round(3*(4*a*c**3 - b**2*c**2-18*a*b*c*d+27*a**2*d**2+4*b**3*d) / (18**2*a**4), 4) ** (1.0/2)u = (9*a*b*c-27*(a**2)*d-2*(b**3)) / (54*(a**3))v = (3*(4*a*c**3 - b**2*c**2-18*a*b*c*d+27*a**2*d**2+4*b**3*d) / (18**2*a**4)) ** (1.0/2)if abs(u+v) >= abs(u-v):m = (u+v) ** (1.0/3)else:m = (u-v) ** (1.0/3)if m == 0: n == 0else:n = (b**2-3*a*c) / (9*a**2*m)# w = complex(0, -0.5+(3/4)**(1.0/2))# w2 = complex(0, -0.5-(3/4)**(1.0/2))w = -0.5+(-3/4)**(1.0/2)w2 = -0.5-(-3/4)**(1.0/2)ab = -b/float(3*a)x1 = m+n+abx2 = w*m+w2*n+abx3 = w2*m+w*n+ab# return x1, x2, x3return round_ri(x1), round_ri(x2), round_ri(x3)
    

    测试结果cardano_solutioncardano_method包可以对上,且求解 x 3 + 1 = 0 x^3+1=0 x3+1=0 没有问题:

    print(cardano_solution(1,3,4,4))
    print(cardano_solution(1,0,0,-1))
    print(cardano_solution(1,0,0,1))
    # ((-0.5+1.3229j), -2.0, (-0.5-1.3229j))
    # (1.0, (-0.5+0.866j), (-0.5-0.866j))
    # ((0.5+0.866j), -1.0, (0.5-0.866j))print(CubicEquation([1,3,4,4]).answers)
    print(CubicEquation([1,0,0,-1]).answers)
    print(CubicEquation([1,0,0,1]).answers)  # 报错
    # [(-2+0j), (-0.5+1.322875j), (-0.5-1.322875j)]
    # [(1+0j), (-0.5+0.866025j), (-0.5-0.866025j)]
    # ZeroDivisionError ...
    

【总结】

  • 根据公式自己编写的函数cardano_solution可求解一元三次方程。
  • 下载的包cardano_method和直接使用Cardano公式写的函数有问题。原因是?

附: python 获取复数的实部和虚部。使用j后缀表示虚数,比如a+bj中,a是实部,b是虚部,python中用complex(a,b)生成一个复数。

x = 2+1.5j
print(x.real)  # 打印实部:2
print(x.imag)  # 打印虚部:2
x1 = complex(2,1.5)  # 使用`complex`生成复数 2+1.5j

这篇关于【math】利用Cardano方法对一元三次方程求解及python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219781

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使