4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比

2023-10-16 06:36

本文主要是介绍4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比
    • Mask R-CNN
    • YOLOV5/8实例分割方法
    • RTMDet中的实例分割


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比

实例分割是同时检测与分割,即在检测出检测框的同时分割出检测中的对象。这样,不仅实现了语义分割,同时区分出了同类别的不同的对象。

human这个类别为例,

检测任务:

分割任务:

实例分割:

从上面这个例子可以看出,检测任务定位了对象的包围框,语义分割分割出了人这个类别,不过把所有的人一起分割了,实例分割区分出了每个人,并分别进行了分割。

实际在做实例分割时,通常同时输出对象的检测框,并给出对象的分割结果。下面介绍三种常见的实例分割算法。

Mask R-CNN

首先是Mask R-CNN,在目标检测中有介绍过Mask RCNNFAIR的何凯明等于201703月提交的论文Mask R-CNN中提出的,该算法同时支持目标检测\实例分割\关键点检测的任务

论文:Mask R-CNN

代码:detectron2

在这里,不再介绍Mask RCNNbackboneneck部分,关于RPN和ROI Pooling的介绍可以参考之前的文章:

1.ROI Pooling 与 ROI Align
2.Region Proposal Network

这里只讨论RoI Pooling后的Head部分,

Mask R-CNN同时支持输出检测框,实例分割结果,关键点,这里我们只讨论Mask Head部分,即上图中的右侧绿色分支。

值得注意的是,上图是粗略表示,关于proposalHead中的使用和Mask/Box/KeyPoint Head之间的关系可以参考下面两个图。

在训练时,Mask/KeyPoint Head都使用proposal框来当作检测box框选对象,如下图蓝色线流所示:

在预测时,Mask/KeyPoint Head不再使用proposals转而使用Box Head预测的检测框来框选对象,因此Mask/KeyPoint Head依赖检测框的输出,如下图紫色线流所示意,

Mask R-CNNMask Head分析如下,整理自detectron2代码库:

Mask Head的输入有两个,一个是bounding boxes或者proposals(测试推理时使用boxes,训练时使用RPN给出的proposals),另一个是backbone提取的feature map

Mask Head的结构如上图,先是对feature map根据bounding boxesROI Pooling,得到每个ROI的特征图,然后是连续几层常规卷积,最后再跟一层转置卷积进行X2上采样,同时卷积输出通道变成num_class,得到的输出shape=(B*N,num_class, 28, 28),这里28x28就是ROI区域对应的mask,这里对每个对象预测了num_classmask,在Mask R-CNN中,直接使用Box Head预测的label id来取对应的masksigmoid以作为最终当前实例的分割结果。

转置卷积的介绍参考这里转置卷积。

得到28X28的实例ROI分割结果后,要将其变换到原图像上,这里使用了grid_sample方法,使用grid_sample变换,会根据box坐标将ROI Mask变换到原图像box所处的区域。变换后再根据超参数阈值对mask做二值化即可得到最后的分割结果。

后记: 这里有个疑问,所有的ROI无论大小都使用了同样大小尺寸的ROI Feature Map都是28x28,但是正常难道不应该对大目标使用大尺寸,小目标使用小尺寸吗?

YOLOV5/8实例分割方法

YOLOV5/8中使用的Instance分割方法和Mask RCNN中区别比较大,

其利用Head1中尺寸最大的特征图作为Mask分支的输入,经过proto_pred卷积层的处理得到shape:(B, mask_channel, H, W)mask_feature

检测框的预测分支和目标检测中的YoloV5 Head基本相同,除了对于feature_map的通道上增加了计算每个实例掩码用的参数,参数的数量同proto_pred输出的mask_channel,所以对于80X80/40X40/20X20feature_map,其通道数为: 4 + 1 + num_classes + mask_channel

拿到解码后的检测框,经过nms处理后得到最后的检测框,取对应的mask_channelcoeffsmask_feature相乘加权即可得到最后的实例分割结果,完整过程如下图:

RTMDet中的实例分割

RTMDet中和YOLOV5处理方式很相似,都是对每个检测框实例计算坐标时同时给出预测mask所需的权重参数,区别在与YOLOV5/8中直接用参数和mask_feature进行加权求和,而RTMDET预测了169个参数,构造了3层卷积,来和mask_feature运算得到分割mask

还有一点RTMDetmask_feature 并非只使用了80X80feature map,它还将其余两个头上的特征图上采样后与其进行concatenate,输入mask_feature分支后得到Batch_SizeX8X80X80mask特征图。特征图并不能直接用来和predicted kernel卷积得到Instance Mask,RTMDet算法使用的mask feat先重复了检测实例的个数次,然后合并了检测框在特征图上的坐标,最后与predicted kernel做卷积的输入mask特征图变成了(N,10,80,80)

RTMDet实例分割推理的完整过程可参考下图,

RTMDet根据predicted_kernel升成卷积的方法被称为动态卷积Dynamic Convolution,如下图,

欢迎访问个人网络日志🌹🌹知行空间🌹🌹


如上,就是Mask R-CNN/YOLOV8/RTMDet三种实例分割的方法,总结来看,YOLOV8/RTMDet方法相似,RTMDet处理mask预测的方法更复杂一些,YOLOV8中的加权求和变成了三层卷积,输入的特征图重复了num_instance次,并合并了mask_feature上对应的priorsnum_instance对应点的相对坐标。YOLOV8/RTMDet输出Instance Mask的分辨率比Mask RCNN要大,Mask RCNN经过转置卷积上采样后输出的RoI分割图的大小是28X28,经过GridSample后还原到原分辨率上。不过Mask R-CNN输出的是RoI的分割图,而YOLOV8/RTMDet输出的是在整幅图像上的分割图。

1.https://github.com/ultralytics/ultralytics.git

2.https://arxiv.org/abs/2212.07784

3.https://github.com/facebookresearch/detectron2.git

这篇关于4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219707

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复