4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比

2023-10-16 06:36

本文主要是介绍4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比
    • Mask R-CNN
    • YOLOV5/8实例分割方法
    • RTMDet中的实例分割


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比

实例分割是同时检测与分割,即在检测出检测框的同时分割出检测中的对象。这样,不仅实现了语义分割,同时区分出了同类别的不同的对象。

human这个类别为例,

检测任务:

分割任务:

实例分割:

从上面这个例子可以看出,检测任务定位了对象的包围框,语义分割分割出了人这个类别,不过把所有的人一起分割了,实例分割区分出了每个人,并分别进行了分割。

实际在做实例分割时,通常同时输出对象的检测框,并给出对象的分割结果。下面介绍三种常见的实例分割算法。

Mask R-CNN

首先是Mask R-CNN,在目标检测中有介绍过Mask RCNNFAIR的何凯明等于201703月提交的论文Mask R-CNN中提出的,该算法同时支持目标检测\实例分割\关键点检测的任务

论文:Mask R-CNN

代码:detectron2

在这里,不再介绍Mask RCNNbackboneneck部分,关于RPN和ROI Pooling的介绍可以参考之前的文章:

1.ROI Pooling 与 ROI Align
2.Region Proposal Network

这里只讨论RoI Pooling后的Head部分,

Mask R-CNN同时支持输出检测框,实例分割结果,关键点,这里我们只讨论Mask Head部分,即上图中的右侧绿色分支。

值得注意的是,上图是粗略表示,关于proposalHead中的使用和Mask/Box/KeyPoint Head之间的关系可以参考下面两个图。

在训练时,Mask/KeyPoint Head都使用proposal框来当作检测box框选对象,如下图蓝色线流所示:

在预测时,Mask/KeyPoint Head不再使用proposals转而使用Box Head预测的检测框来框选对象,因此Mask/KeyPoint Head依赖检测框的输出,如下图紫色线流所示意,

Mask R-CNNMask Head分析如下,整理自detectron2代码库:

Mask Head的输入有两个,一个是bounding boxes或者proposals(测试推理时使用boxes,训练时使用RPN给出的proposals),另一个是backbone提取的feature map

Mask Head的结构如上图,先是对feature map根据bounding boxesROI Pooling,得到每个ROI的特征图,然后是连续几层常规卷积,最后再跟一层转置卷积进行X2上采样,同时卷积输出通道变成num_class,得到的输出shape=(B*N,num_class, 28, 28),这里28x28就是ROI区域对应的mask,这里对每个对象预测了num_classmask,在Mask R-CNN中,直接使用Box Head预测的label id来取对应的masksigmoid以作为最终当前实例的分割结果。

转置卷积的介绍参考这里转置卷积。

得到28X28的实例ROI分割结果后,要将其变换到原图像上,这里使用了grid_sample方法,使用grid_sample变换,会根据box坐标将ROI Mask变换到原图像box所处的区域。变换后再根据超参数阈值对mask做二值化即可得到最后的分割结果。

后记: 这里有个疑问,所有的ROI无论大小都使用了同样大小尺寸的ROI Feature Map都是28x28,但是正常难道不应该对大目标使用大尺寸,小目标使用小尺寸吗?

YOLOV5/8实例分割方法

YOLOV5/8中使用的Instance分割方法和Mask RCNN中区别比较大,

其利用Head1中尺寸最大的特征图作为Mask分支的输入,经过proto_pred卷积层的处理得到shape:(B, mask_channel, H, W)mask_feature

检测框的预测分支和目标检测中的YoloV5 Head基本相同,除了对于feature_map的通道上增加了计算每个实例掩码用的参数,参数的数量同proto_pred输出的mask_channel,所以对于80X80/40X40/20X20feature_map,其通道数为: 4 + 1 + num_classes + mask_channel

拿到解码后的检测框,经过nms处理后得到最后的检测框,取对应的mask_channelcoeffsmask_feature相乘加权即可得到最后的实例分割结果,完整过程如下图:

RTMDet中的实例分割

RTMDet中和YOLOV5处理方式很相似,都是对每个检测框实例计算坐标时同时给出预测mask所需的权重参数,区别在与YOLOV5/8中直接用参数和mask_feature进行加权求和,而RTMDET预测了169个参数,构造了3层卷积,来和mask_feature运算得到分割mask

还有一点RTMDetmask_feature 并非只使用了80X80feature map,它还将其余两个头上的特征图上采样后与其进行concatenate,输入mask_feature分支后得到Batch_SizeX8X80X80mask特征图。特征图并不能直接用来和predicted kernel卷积得到Instance Mask,RTMDet算法使用的mask feat先重复了检测实例的个数次,然后合并了检测框在特征图上的坐标,最后与predicted kernel做卷积的输入mask特征图变成了(N,10,80,80)

RTMDet实例分割推理的完整过程可参考下图,

RTMDet根据predicted_kernel升成卷积的方法被称为动态卷积Dynamic Convolution,如下图,

欢迎访问个人网络日志🌹🌹知行空间🌹🌹


如上,就是Mask R-CNN/YOLOV8/RTMDet三种实例分割的方法,总结来看,YOLOV8/RTMDet方法相似,RTMDet处理mask预测的方法更复杂一些,YOLOV8中的加权求和变成了三层卷积,输入的特征图重复了num_instance次,并合并了mask_feature上对应的priorsnum_instance对应点的相对坐标。YOLOV8/RTMDet输出Instance Mask的分辨率比Mask RCNN要大,Mask RCNN经过转置卷积上采样后输出的RoI分割图的大小是28X28,经过GridSample后还原到原分辨率上。不过Mask R-CNN输出的是RoI的分割图,而YOLOV8/RTMDet输出的是在整幅图像上的分割图。

1.https://github.com/ultralytics/ultralytics.git

2.https://arxiv.org/abs/2212.07784

3.https://github.com/facebookresearch/detectron2.git

这篇关于4.Mask R-CNN/YOLOV8/RTMDET三种实例分割方法推理逻辑对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219707

相关文章

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

详解Java中三种状态机实现方式来优雅消灭 if-else 嵌套

《详解Java中三种状态机实现方式来优雅消灭if-else嵌套》这篇文章主要为大家详细介绍了Java中三种状态机实现方式从而优雅消灭if-else嵌套,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录1. 前言2. 复现传统if-else实现的业务场景问题3. 用状态机模式改造3.1 定义状态接口3

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Python如何调用另一个类的方法和属性

《Python如何调用另一个类的方法和属性》在Python面向对象编程中,类与类之间的交互是非常常见的场景,本文将详细介绍在Python中一个类如何调用另一个类的方法和属性,大家可以根据需要进行选择... 目录一、前言二、基本调用方式通过实例化调用通过类继承调用三、高级调用方式通过组合方式调用通过类方法/静

java -jar example.jar 产生的日志输出到指定文件的方法

《java-jarexample.jar产生的日志输出到指定文件的方法》这篇文章给大家介绍java-jarexample.jar产生的日志输出到指定文件的方法,本文给大家介绍的非常详细,对大家的... 目录怎么让 Java -jar example.jar 产生的日志输出到指定文件一、方法1:使用重定向1、

Java报错:org.springframework.beans.factory.BeanCreationException的五种解决方法

《Java报错:org.springframework.beans.factory.BeanCreationException的五种解决方法》本文解析Spring框架中BeanCreationExce... 目录引言一、问题描述1.1 报错示例假设我们有一个简单的Java类,代表一个用户信息的实体类:然后,

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详