多个Python包懒得import,那就一包搞定!

2023-10-15 14:45

本文主要是介绍多个Python包懒得import,那就一包搞定!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Python时,有的代码需要依赖多个框架或库者来完成,代码开头需要import多次,比如,

import pandas as pd
from pyspark import SparkContext
from openpyxl import load_workbook
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression

本次分享一个Python工具pyforest,只需要import pyforest一行代码即可导入所有依赖的python包(机器上已安装过的),


pyforest安装

支持Python 3.6+之后的版本,因为pyforest开发者是py流行的字符串格式化机制f-strings的忠实粉丝。

pip install --upgrade pyforest -i https://pypi.tuna.tsinghua.edu.cn/simple

pyforest使用

以使用seaborn可视化为例,

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
转载请标明来源!转载请标明来源!转载请标明来源!
@Time    :   2023年10月
@Author  :   公众号:pythonic生物人
@Contact :   公众号:pythonic生物人
@Desc    :   Demo for pyforest
'''#第1步:导入依赖包
import pyforest#第2步:设置绘图风格、文本字体
sns.set_theme()
mpl.rcParams['font.family'] = 'Songti SC'#第3步:数据读取
tips = pd.read_csv('./sns_data/tips.csv')#第4步:seaborn绘图
sns.relplot(data=tips,x="消费金额 ($)",y="小费金额 ($)",col="就餐时间",hue="是否吸烟",style="是否吸烟",size="一起就餐人数 (个)")

可以看到仅import pyforest一行代码就一次性导入了seaborn、pandas、matplotlib包,省略了重复使用import语句,即下面这些代码,

import seaborn as sns
import pandas as pd
import matplotlib as mpl

pyforest支持哪些包

pyforest覆盖99%以上主流Python Data Science libraries例如,import pandas as pd,import numpy as np,import seaborn as sns,import matplotlib.pyplot as plt, from sklearn.linear_model import LinearRegression等等。

注意:pyforest中导入的包遵循python社区默认的简称,如pandas>pd、seaborn>sns、matplotlib.pyplot>plt等等。

具体支持哪些包,可通过dir(pyforest)或者https://github.com/8080labs/pyforest/blob/master/src/pyforest/_imports.py查看,详细如下,

### Data Wrangling
pd = LazyImport("import pandas as pd")np = LazyImport("import numpy as np")dd = LazyImport("from dask import dataframe as dd")
SparkContext = LazyImport("from pyspark import SparkContext")load_workbook = LazyImport("from openpyxl import load_workbook")open_workbook = LazyImport("from xlrd import open_workbook")wr = LazyImport("import awswrangler as wr")### Data Visualization and Plotting
mpl = LazyImport("import matplotlib as mpl")
plt = LazyImport("import matplotlib.pyplot as plt")sns = LazyImport("import seaborn as sns")py = LazyImport("import plotly as py")
go = LazyImport("import plotly.graph_objs as go")
px = LazyImport("import plotly.express as px")dash = LazyImport("import dash")bokeh = LazyImport("import bokeh")alt = LazyImport("import altair as alt")pydot = LazyImport("import pydot")### Image processingcv2 = LazyImport("import cv2")
skimage = LazyImport("import skimage")
Image = LazyImport("from PIL import Image")
imutils = LazyImport("import imutils")# statistics
statistics = LazyImport("import statistics")
stats = LazyImport("from scipy import stats")
sm = LazyImport("import statsmodels.api as sm")### Time-Series Forecasting
fbprophet = LazyImport("import fbprophet")
Prophet = LazyImport("from fbprophet import Prophet")
ARIMA = LazyImport("from statsmodels.tsa.arima_model import ARIMA")### Machine Learning
sklearn = LazyImport("import sklearn")LinearRegression = LazyImport("from sklearn.linear_model import LinearRegression")
LogisticRegression = LazyImport("from sklearn.linear_model import LogisticRegression")
Lasso = LazyImport("from sklearn.linear_model import Lasso")
LassoCV = LazyImport("from sklearn.linear_model import LassoCV")
Ridge = LazyImport("from sklearn.linear_model import Ridge")
RidgeCV = LazyImport("from sklearn.linear_model import RidgeCV")
ElasticNet = LazyImport("from sklearn.linear_model import ElasticNet")
ElasticNetCV = LazyImport("from sklearn.linear_model import ElasticNetCV")
PolynomialFeatures = LazyImport("from sklearn.preprocessing import PolynomialFeatures")
StandardScaler = LazyImport("from sklearn.preprocessing import StandardScaler")
MinMaxScaler = LazyImport("from sklearn.preprocessing import MinMaxScaler")
RobustScaler = LazyImport("from sklearn.preprocessing import RobustScaler")OneHotEncoder = LazyImport("from sklearn.preprocessing import OneHotEncoder")
LabelEncoder = LazyImport("from sklearn.preprocessing import LabelEncoder")
TSNE = LazyImport("from sklearn.manifold import TSNE")
PCA = LazyImport("from sklearn.decomposition import PCA")
SimpleImputer = LazyImport("from sklearn.impute import SimpleImputer")
train_test_split = LazyImport("from sklearn.model_selection import train_test_split")
cross_val_score = LazyImport("from sklearn.model_selection import cross_val_score")
GridSearchCV = LazyImport("from sklearn.model_selection import GridSearchCV")
RandomizedSearchCV = LazyImport("from sklearn.model_selection import RandomizedSearchCV")
KFold = LazyImport("from sklearn.model_selection import KFold")
StratifiedKFold = LazyImport("from sklearn.model_selection import StratifiedKFold")svm = LazyImport("from sklearn import svm")
GradientBoostingClassifier = LazyImport("from sklearn.ensemble import GradientBoostingClassifier"
)
GradientBoostingRegressor = LazyImport("from sklearn.ensemble import GradientBoostingRegressor"
)
RandomForestClassifier = LazyImport("from sklearn.ensemble import RandomForestClassifier"
)
RandomForestRegressor = LazyImport("from sklearn.ensemble import RandomForestRegressor")TfidfVectorizer = LazyImport("from sklearn.feature_extraction.text import TfidfVectorizer"
)CountVectorizer = LazyImport("from sklearn.feature_extraction.text import CountVectorizer"
)metrics = LazyImport("from sklearn import metrics")sg = LazyImport("from scipy import signal as sg")# Clustering
KMeans = LazyImport ("from sklearn.cluster import KMeans")# Gradient Boosting Decision Tree
xgb = LazyImport("import xgboost as xgb")
lgb = LazyImport("import lightgbm as lgb")# TODO: add all the other most important sklearn objects
# TODO: add separate sections within machine learning viz. Classification, Regression, Error Functions, Clustering# Deep Learning
tf = LazyImport("import tensorflow as tf")
keras = LazyImport("import keras")
torch = LazyImport("import torch")
fastai = LazyImport("import fastai")# NLP
nltk = LazyImport("import nltk")
gensim = LazyImport("import gensim")
spacy = LazyImport("import spacy")
re = LazyImport("import re")
textblob = LazyImport("import textblob")### Helper
sys = LazyImport("import sys")
os = LazyImport("import os")
re = LazyImport("import re")
glob = LazyImport("import glob")
Path = LazyImport("from pathlib import Path")pickle = LazyImport("import pickle")dt = LazyImport("import datetime as dt")tqdm = LazyImport("import tqdm")

pyforest不支持的包怎么办

pyforest中导入的包遵循python社区默认的简称,如pandas>pd、seaborn>sns、matplotlib.pyplot>plt等等。

如果想个性化自己的包导入简称,可在~/.pyforest/user_imports.py中添加自己的个性化设置即可,例如,一般是import pandas as pd,想设置为import pandas as pd_test,

在 ~/.pyforest/user_imports.py中添加import pandas as pd_test保存即可。

同样当pyforest不包含自己的包时,也可以以上面同样的方法添加。

进一步学习:https://github.com/8080labs/pyforest


推荐阅读:
  • 10W字《R ggplot2可视化教程1.0》来了!

  • 详解Python列表推导式|迭代器|生成器|匿名函数

  • Jupyter Notebook的16个超棒插件!

  • 临床WGS/WES/Gene Panel/Single gene异同

  • 一图胜千言,超形象图解NumPy教程!

  • 那些神经网络可视化利器

  • R Graphics Cookbook中译教程

这篇关于多个Python包懒得import,那就一包搞定!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218310

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: