力扣 095. 最长公共子序列(C语言+动态规划)

2023-10-15 00:52

本文主要是介绍力扣 095. 最长公共子序列(C语言+动态规划),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 题目

        给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

        一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

        例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

        两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

2. 输入输出样例

        示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 

        示例 2: 

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 

         示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

 提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成。

3. 解题思想

        动态规划步骤:

        (1)dp状态:

                dp[i][j]表示以text1[i]、text2[j]为结尾的两个字符串中最长公共子序列的长度;

        (2)状态转移方程:

                text1[i] == text2[j]:dp[i][j] = dp[i - 1][j - 1] + 1;

                text1[i] != text2[j]:max(dp[i - 1][j], dp[i][j - 1]);

        (3)初始化状态:

                第0行第0列:text1[0] == text2[0]:dp[0][0] = 1;text1[0] != text2[0]:dp[0][0] = 0;

                第0行:text1[i] == text2[0]:dp[i][0] = 1;text1[i] != text2[0]:dp[i][0] = dp[i - 1][0];

                第0列:text1[0] == text2[i]:dp[0][1] = 1;text1[0] != text2[i]:dp[0][i] = dp[0][i-1];

         (4)最优解:

                dp[n-1][m-1] ;

        算法描述:

        核心思想是通过填充 dp 数组,逐步构建最长公共子序列的长度,考虑字符是否匹配。

  • 首先,获取输入字符串 text1text2 的长度,并创建一个二维数组 dp,其大小为 (n+1) x (m+1),其中 nm 分别是两个字符串的长度。dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列的长度。
  • 初始化 dp 数组的第一行和第一列:遍历两个字符串的首字符,如果它们相等,将 dp[0][0] 设置为1,否则将其保留为0。接着,初始化第一行和第一列的其余部分,以表示以 text1[0]text2[0] 开头的子序列。
  • 使用两个嵌套循环遍历 text1text2 的每个字符(除去第一个字符),填充 dp 数组。如果当前字符相同(text1[i] == text2[j]),则将 dp[i][j] 设置为左上角的对角元素值加1,表示找到了一个更长的公共子序列。如果当前字符不同,将 dp[i][j] 设置为左边或上边的较大值,表示要么继承左边的最长子序列长度,要么继承上边的最长子序列长度。
  • 最终,dp[n-1][m-1] 中存储的值即为 text1text2 的最长公共子序列的长度。

4. 代码实现

// 定义一个函数,该函数返回两个整数指针中的较大值
int max_(int *a, int *b) {// 比较两个指针的值,返回较大的指针if (a > b) {return a;}return b;
}// 定义一个计算两个字符串的最长公共子序列的函数
int longestCommonSubsequence(char *text1, char *text2) {// 获取字符串text1和text2的长度int n = strlen(text1);int m = strlen(text2);// 创建一个二维数组dp,用于存储最长公共子序列的长度int dp[n][m];// 初始化dp数组,将所有元素设置为0for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {dp[i][j] = 0;}}// 初始化dp数组的第一个元素if (text1[0] == text2[0]) {dp[0][0] = 1;}// 处理第一列,初始化以text1[0]为开头的子序列for (int i = 1; i < n; i++) {if (text1[i] == text2[0]) {dp[i][0] = 1;} else {dp[i][0] = dp[i - 1][0];}}// 处理第一行,初始化以text2[0]为开头的子序列for (int i = 1; i < m; i++) {if (text1[0] == text2[i]) {dp[0][i] = 1;} else {dp[0][i] = dp[0][i - 1];}}// 填充dp数组的其余部分,找到最长公共子序列的长度for (int i = 1; i < n; i++) {for (int j = 1; j < m; j++) {if (text1[i] == text2[j]) {// 如果字符相同,将dp[i][j]设置为左上角值加1dp[i][j] = dp[i - 1][j - 1] + 1;} else {// 如果字符不相同,将dp[i][j]设置为左边和上边的较大值dp[i][j] = max_(dp[i - 1][j], dp[i][j - 1]);}}}// 返回dp数组的最右下角元素,即最长公共子序列的长度return dp[n - 1][m - 1];
}

 5. 复杂度分析

        时间复杂度分析:

  • 初始化 dp 数组的两个嵌套循环(for 循环嵌套)需要遍历整个数组,时间复杂度为O(n * m),其中 n 和 m 分别是 text1text2 的长度。
  • 接下来,还需要一个嵌套循环来填充 dp 数组,这个循环也需要遍历整个 dp 数组,时间复杂度为O(n * m)。
  • 总的时间复杂度是O(n * m + n * m),即O(n * m)。

        算法的时间复杂度是 O(n * m),其中 n 和 m 分别是输入字符串 text1text2 的长度。

        

        空间复杂度分析:

  • dp 数组的空间复杂度是O(n * m),因为它是一个二维数组,其大小与输入字符串的长度相关。

综上所述,这段代码的空间复杂度是 O(n * m)时间复杂度是 O(n * m)

 

 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台https://leetcode.cn/problems/qJnOS7/submissions/

 

这篇关于力扣 095. 最长公共子序列(C语言+动态规划)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/214301

相关文章

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常