hanlp源码解析word2vec词向量算法

2023-10-14 18:30

本文主要是介绍hanlp源码解析word2vec词向量算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注鄙人公众号,技术干货随时看!
在这里插入图片描述

one-hot表示法

词向量就是把一个词用向量的形式表示,以前的经典表示法是one-hot,这种表示法向量的维度是词汇量的大小。它的处理方式简单粗暴,一般就是统计词库包含的所有V个词,然后将这V个词固定好顺序,然后每个词就可以用一个V维的稀疏向量来表示,向量中只有在该词出现的位置的元素才为1,其它元素全为0。比如下面这几个词,第一个元素为1的表示中国,第六个元素为1的表示美国,第五个元素为1的表示日本。

中国[1,0,0,0,0,0,0,0,0,……,0,0,0,0,0,0,0]

美国[0,0,0,0,0,1,0,0,0,……,0,0,0,0,0,0,0]

日本[0,0,0,0,1,0,0,0,0,……,0,0,0,0,0,0,0]

按照目前汉语的词汇量20万左右,那么一个词就是20万维度的向量来表示,这对内存和计算效率都是灾难性的,优点是非常简单,只需过扫描一遍语料库好即可。

word2vec

google开源的word2vec得到的词的向量形式则可以自由控制维度,一般是100左右。google开源的是用c语言开发的,hanlp的作者移植了这套c代码并合并到了word2vec中。据说,每个线程每秒训练的词语稳定在180-190K,比原版C程序要快2.5倍左右;训练速度比C程序要快的原因是,原版C程序读取单词后需要去char数组里遍历查找id;而我的Java实现直接读取缓存文件中的id,当然开始训练前要先进行词->id的转换并输出到缓存文件,这个过程大约多花一两分钟时间,相较于训练时间,无疑是值得的。这样改进之后还可以直接读取类似text8那样的变态语料,一举多得。效率与c语言版的没有差别。

下面开始正式讨论hanlp中word2vec的源码。关计word2vec中用到的神经网络的模型和算法,这里不再赘述,请参考作者的文章http://www.hankcs.com/nlp/word2vec.html
 
 语料库

训库词向量当然需要一个相对完整的语料库,目有可以采用人民日报、Sighan05分词语料 http://sighan.cs.uchicago.edu/bakeoff2005/,一般情况下首先对语料库分词,这里不再讨论分词,为了讨论源码的方更的,我们采用的语料库如下(生产环境语料库越大越向量模型越准确):

帕勒莫 VS 梅西纳 已经 无关紧要 初盘 显示 格局 
雷吉纳 VS 尤文图斯 初盘 显示 客队 强大 关系到 客队 夺冠 问题 尤文图斯 任胆 
特雷维索 VS 乌迪内斯 乌迪内斯 客场 连续 拿下 状态 开出 平手 想必 乌鸡 势头 就此 中断 足彩 王智 德甲 解盘 
科隆 VS 比勒菲尔德 初盘 高开 意图 明显 庄家 筹码 上盘 嫌疑 极大 科隆 有望 不败 
拜仁 慕尼黑 VS 多特蒙德 多特蒙德 客场 至多 连赢 极限 盘也 有意 冷落 主队 
汉堡 VS 不莱梅 半球盘 本赛季 尚无 平局 记录 适合 选择 
杜伊斯堡 VS 美因兹 初盘 极为 不符 庄家 利用 主队 已经 降级 题材 美因兹 嫌疑 
沙尔克 VS 斯图加特 初盘 主队 水位 偏高 目前 斯图加特 客场 路有 反弹 迹象 排除 客队 可能 

训练完成的词向量文件如下所示:第一行是词向量的条数和维度。

15 20
VS 0.020013 0.022097 -0.019151 -0.016390 0.006833 0.015105 0.004704 0.001057 -0.018018 0.011092 -0.021782 0.006248 -0.003757 -0.004786 -0.016579 -0.009411 0.012897 0.015127 0.014845 0.007987
初盘 0.007693 -0.018967 -0.020466 0.024825 0.019040 0.015461 -0.003025 0.020149 -0.002462 0.003626 -0.000768 -0.014950 0.006504 -0.006674 -0.019058 0.023742 0.021883 -0.005529 -0.001090 0.002513
客队 -0.018188 -0.020036 0.022774 0.000315 -0.012912 -0.015211 -0.015382 0.008485 0.001007 0.006655 -0.021068 -0.019039 -0.000650 0.005718 0.012749 -0.015850 0.020398 0.004635 0.005598 -0.003042
客场 0.014932 -0.011439 -0.010487 0.010792 -0.003766 0.005154 0.009023 -0.020443 -0.009915 0.014568 0.021159 0.019660 -0.015234 -0.010538 -0.004546 0.010007 -0.018942 0.014989 0.013939 -0.007995
主队 -0.007750 -0.011236 0.021236 0.019609 -0.005778 0.021135 0.024224 0.009164 0.024857 -0.015614 -0.007675 -0.010631 -0.014663 0.014050 0.008034 0.002098 -0.011031 0.007467 0.015391 0.000876
已经 0.011419 -0.024740 0.021474 0.002454 -0.009068 -0.010289 -0.003746 -0.014546 -0.021767 -0.014196 0.021319 -0.008875 -0.013376 0.011613 -0.008489 0.023771 -0.007968 -0.022923 0.013644 -0.000344
显示 -0.017444 0.004879 0.007210 -0.002407 0.009122 -0.019788 0.004405 0.009083 -0.015045 0.000710 -0.000304 -0.011996 -0.014163 -0.023469 0.000114 0.000764 0.000049 -0.019669 -0.024809 -0.023733
尤文图斯 -0.021628 -0.002735 0.006956 0.005921 -0.015912 0.024990 -0.010057 -0.006368 -0.007022 0.023663 -0.018819 0.005805 -0.006677 0.015939 0.000203 0.021348 -0.014096 -0.013026 -0.020961 -0.018334
乌迪内斯 -0.015997 -0.015574 0.012221 -0.009335 0.013400 0.018450 0.006779 0.014753 0.012378 0.011703 -0.017754 -0.017165 -0.018283 -0.000660 0.020653 -0.013683 -0.015302 -0.020982 0.016530 -0.020895
科隆 -0.002896 0.010894 -0.023091 -0.022393 0.007214 0.017623 0.021321 0.010728 0.015811 -0.015638 -0.018202 0.019874 -0.013824 0.008767 0.002870 0.008952 -0.005911 0.000994 -0.008430 -0.005633
庄家 -0.022181 -0.016407 0.017515 0.005170 -0.011805 -0.007914 0.012580 -0.017677 -0.011669 0.023722 0.021310 -0.019916 0.004310 -0.011295 0.000681 0.015143 0.024270 0.009833 0.020564 0.015712
嫌疑 -0.001188 0.022385 0.012687 0.023688 -0.008521 0.023697 0.021633 -0.007123 -0.022107 0.024156 0.004487 -0.010408 -0.003606 -0.003700 -0.019260 -0.007152 -0.002211 -0.024650 -0.017598 -0.006039
多特蒙德 -0.004566 0.008701 0.004184 -0.002898 0.014885 0.007425 0.002952 0.018191 -0.005542 -0.007308 -0.002137 -0.013698 -0.015125 0.001091 0.021833 -0.006802 -0.000246 -0.020732 0.018738 -0.007649
美因兹 0.014931 -0.012285 -0.004318 0.000548 0.018110 -0.000446 0.022263 -0.003785 0.010456 -0.000800 -0.019446 0.021221 0.005188 -0.015099 0.015043 -0.020609 -0.021879 0.016274 -0.017079 -0.013266
斯图加特 0.017639 0.016427 0.003426 0.022617 0.024283 0.020275 0.008824 -0.021752 0.011444 -0.024461 -0.006432 0.007560 0.004904 -0.007624 0.014690 -0.023040 -0.007056 -0.006559 -0.008281 0.015354

模型训练第一步:加载语料库,统计词频,(只保留词频大于等于2的词)

 /*** 此函数功能完成词频统计* 每个词的相关信息存储在VocabWord中,word是对应的词,cn是在语料库中出现的次数,codelen是huffman编码的长度,code是huffman编码,point是对应的前置结点** @throws IOException*/public void learnVocab() throws IOException{vocab = new VocabWord[vocabMaxSize];vocabIndexMap = new TreeMap<String, Integer>();//此处作者是用TreeMap和数组相结合的形式来存储的,vocabIndexMap的key是word,value是对应vocab中的下标vocabSize = 0;final File trainFile = new File(config.getInputFile());BufferedReader raf = null;FileInputStream fileInputStream = null;cache = null;vocabSize = 0;TrainingCallback callback = config.getCallback();try{fileInputStream = new FileInputStream(trainFile);raf = new BufferedReader(new InputStreamReader(fileInputStream, encoding));cacheFile = File.createTempFile(String.format("corpus_%d", System.currentTimeMillis()), ".bin");cache = new DataOutputStream(new FileOutputStream(cacheFile));while (true){String word = readWord(raf);//读取一个词if (word == null && eoc) break;trainWords++;if (trainWords % 100000 == 0)//这段代码是打印进度的,不用管{if (callback == null){System.err.printf("=======%c%.2f%% %dK", 13,(1.f - fileInputStream.available() / (float) trainFile.length()) * 100.f,trainWords / 1000);System.err.flush();}else{callback.corpusLoading((1.f - fileInputStream.available() / (float) trainFile.length()) * 100.f);}}int idx = searchVocab(word);//查询下vocabIndexMap中有没有出现过,出现过就词步加1,没有出现过就加到map里面if (idx == -1){idx = addWordToVocab(word);vocab[idx].cn = 1;} else {vocab[idx].cn++;}if (vocabSize > VOCAB_MAX_SIZE * 0.7)//这段代码是当此词汇非常大时,移除低词频的词{reduceVocab();idx = searchVocab(word);}cache.writeInt(idx);}}finally{Utility.closeQuietly(fileInputStream);Utility.closeQuietly(raf);Utility.closeQuietly(cache);System.err.println();}if (callback == null){System.err.printf("%c100%% %dK", 13, trainWords / 1000);System.err.flush();}else{callback.corpusLoading(100);callback.corpusLoaded(vocabSize, trainWords, trainWords);}}

模型训练第二步:对词频排序,从大到小,实现原理很简单就是实现comparable接口

@Overridepublic int compareTo(VocabWord that){return that.cn - this.cn;}

模型训练第三步:构建huffman树

 void createBinaryTree(){int[] point = new int[VocabWord.MAX_CODE_LENGTH];char[] code = new char[VocabWord.MAX_CODE_LENGTH];int[] count = new int[vocabSize * 2 + 1];char[] binary = new char[vocabSize * 2 + 1];//存储huffman编码int[] parentNode = new int[vocabSize * 2 + 1];//一组数组存储huffman树for (int i = 0; i < vocabSize; i++)count[i] = vocab[i].cn;for (int i = vocabSize; i < vocabSize * 2; i++)count[i] = Integer.MAX_VALUE;int pos1 = vocabSize - 1;int pos2 = vocabSize;// Following algorithm constructs the Huffman tree by adding one node at a timeint min1i, min2i;for (int i = 0; i < vocabSize - 1; i++){// First, find two smallest nodes 'min1, min2'if (pos1 >= 0){if (count[pos1] < count[pos2]){min1i = pos1;pos1--;}else{min1i = pos2;pos2++;}}else{min1i = pos2;pos2++;}if (pos1 >= 0){if (count[pos1] < count[pos2]){min2i = pos1;pos1--;}else{min2i = pos2;pos2++;}}else{min2i = pos2;pos2++;}count[vocabSize + i] = count[min1i] + count[min2i];parentNode[min1i] = vocabSize + i;parentNode[min2i] = vocabSize + i;binary[min2i] = 1;}System.out.println(Arrays.toString(count));System.out.println(Arrays.toString(parentNode));System.out.println(Arrays.toString(binary));// Now assign binary code to each vocabulary wordfor (int j = 0; j < vocabSize; j++){int k = j;int i = 0;while (true){code[i] = binary[k];point[i] = k;i++;k = parentNode[k];if (k == vocabSize * 2 - 2) break;}vocab[j].codelen = i;vocab[j].point[0] = vocabSize - 2;for (k = 0; k < i; k++){vocab[j].code[i - k - 1] = code[k];vocab[j].point[i - k] = point[k] - vocabSize;}}System.out.println(Arrays.toString(vocab));}

这段代码看起来有点晕,因为词汇量很大,我画了张图,最终构建的huffman如下所示,下面所有的模型训练都是基于这张huffman图

这里写图片描述

最终的词汇表如下所示:

这里写图片描述

cbow模型训练:
待续!

这篇关于hanlp源码解析word2vec词向量算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/212330

相关文章

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析