FasterRCNN源码解析(六)——RPN(中)Proposal的获取

2023-10-14 15:10

本文主要是介绍FasterRCNN源码解析(六)——RPN(中)Proposal的获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FasterRCNN源码解析(六)——RPN(中)Proposal的获取

利用生成的anchos以及RPNHead模块得到的预测分数以及目标边界框回归参数,获取proposal,然后再经过一系列算法滤除部分proposal,得到我们RPN模块输出的proposal。

文章目录

  • FasterRCNN源码解析(六)——RPN(中)Proposal的获取
  • 一、RegionProposalNetwork
  • 二、self.filter_proposals


一、RegionProposalNetwork

怎样去实例化RPN模型呢?

rpn = RegionProposalNetwork(rpn_anchor_generator, rpn_head, # FasterRCNN源码解析(五)所提到的rpn_fg_iou_thresh, rpn_bg_iou_thresh, # rpn计算损失时,采集正负样本设置的阈值   , 在其之间直接舍去rpn_batch_size_per_image, rpn_positive_fraction, # 前者是rpn在计算损失时采用正负样本的总个数, 后者是正样本占用于计算损失所有样本rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh )

rpn_anchor_generator, rpn_head, : FasterRCNN源码解析(五)所提到的
rpn_fg_iou_thresh, rpn_bg_iou_thresh, : rpn计算损失时,采集正负样本设置的阈值 , 在其之间直接舍去
rpn_batch_size_per_image, rpn_positive_fraction,: 前者是rpn在计算损失时采用正负样本的总个数, 后者是正样本占用于计算损失所有样本
rpn_pre_nms_top_n,:在nms处理之前 针对每个预测特征层所保留的目标个数
rpn_post_nms_top_n,:在nms处理之后所剩余的目标个数 即RPN输出的proposal的目标个数
rpn_nms_thresh :nms处理时 所指定的一个阈值

二、self.filter_proposals

其作用为筛除小boxes框,nms处理,根据预测概率获取前post_nms_top_n个目标
传入的参数有
proposals: 预测的bbox坐标
objectness: 预测的目标概率
image_shapes: batch中每张图片的size信息
num_anchors_per_level: 每个预测特征层上预测anchors的数目
主要步骤有:

  1. 获取图片数量

  2. 对objectness变量进行resape处理,使其变为 b a t c h ∗ 预 测 的 数 值 个 数 batch*预测的数值个数 batch在这里插入图片描述

  3. 使用levels变量记录分隔不同预测特征层的索引信息(有多层预测特征层会生成多个tensor,每层tensor用该层的索引进行填充,然后进行拼接操作)目的是为了区分不同的特征层的anchor在这里插入图片描述在这里插入图片描述在这里插入图片描述

  4. 将我们的tensor(levels变量)在第一个维度上进行复制,复制batch_size分在这里插入图片描述

  5. 获取每张预测特征图上预测概率排前pre_nms_top_n的anchors索引值
    最后输出为:(每张图片只剩下8768个proposal了)
    在这里插入图片描述

  6. 根据每个预测特征层预测概率排前pre_nms_top_n的anchors索引值获取相应概率信息
    在这里插入图片描述
    在这里插入图片描述

  7. 预测概率排前pre_nms_top_n的anchors索引值获取相应bbox坐标信息
    在这里插入图片描述

  8. 遍历每张图片的相关预测信息(滤除小目标,进行nms处理,按照我们目标类别分数进行排序输出的,取前top_n个boxes和 scores)

在这里插入图片描述
在这里插入图片描述

    def filter_proposals(self, proposals, objectness, image_shapes, num_anchors_per_level):# type: (Tensor, Tensor, List[Tuple[int, int]], List[int]) -> Tuple[List[Tensor], List[Tensor]]"""筛除小boxes框,nms处理,根据预测概率获取前post_nms_top_n个目标Args:proposals: 预测的bbox坐标objectness: 预测的目标概率image_shapes: batch中每张图片的size信息num_anchors_per_level: 每个预测特征层上预测anchors的数目Returns:"""num_images = proposals.shape[0]device = proposals.device# do not backprop throught objectnessobjectness = objectness.detach()objectness = objectness.reshape(num_images, -1)# Returns a tensor of size size filled with fill_value# levels负责记录分隔不同预测特征层上的anchors索引信息levels = [torch.full((n, ), idx, dtype=torch.int64, device=device)for idx, n in enumerate(num_anchors_per_level)]levels = torch.cat(levels, 0)# Expand this tensor to the same size as objectnesslevels = levels.reshape(1, -1).expand_as(objectness)# select top_n boxes independently per level before applying nms# 获取每张预测特征图上预测概率排前pre_nms_top_n的anchors索引值top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)image_range = torch.arange(num_images, device=device)batch_idx = image_range[:, None]  # [batch_size, 1]# 根据每个预测特征层预测概率排前pre_nms_top_n的anchors索引值获取相应概率信息objectness = objectness[batch_idx, top_n_idx]levels = levels[batch_idx, top_n_idx]# 预测概率排前pre_nms_top_n的anchors索引值获取相应bbox坐标信息proposals = proposals[batch_idx, top_n_idx]final_boxes = []final_scores = []# 遍历每张图像的相关预测信息for boxes, scores, lvl, img_shape in zip(proposals, objectness, levels, image_shapes):# 调整预测的boxes信息,将越界的坐标调整到图片边界上boxes = box_ops.clip_boxes_to_image(boxes, img_shape)# 返回boxes满足宽,高都大于min_size的索引keep = box_ops.remove_small_boxes(boxes, self.min_size)boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]# non-maximum suppression, independently done per levelkeep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)# keep only topk scoring predictionskeep = keep[: self.post_nms_top_n()]boxes, scores = boxes[keep], scores[keep]final_boxes.append(boxes)final_scores.append(scores)return final_boxes, final_scores

这篇关于FasterRCNN源码解析(六)——RPN(中)Proposal的获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211321

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N