用python实现Pure Pursuit控制算法

2023-10-14 14:38

本文主要是介绍用python实现Pure Pursuit控制算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前对Pure Pursuit控制算法作了介绍,并用Matlab进行了仿真,具体参考:https://blog.csdn.net/Ronnie_Hu/article/details/115817922?spm=1001.2014.3001.5501。

下面改用python对其进行仿真,同样跟踪一个圆形轨迹,具体代码如下:

import numpy as np
import matplotlib.pyplot as plt
import math# set figure size
plt.figure(figsize=(8, 8))# define UGV class
class UGV_model:def __init__(self, x0, y0, theta0, v0, L, T):self.x = x0self.y = y0self.theta = theta0self.v = v0self.l = Lself.dt = Tdef update(self,deltat):dx_vs_dt = self.v*np.cos(self.theta) dy_vs_dt = self.v*np.sin(self.theta)dtheta_vs_dt = self.v*np.tan(deltat)/self.lself.x += dx_vs_dt*self.dtself.y += dy_vs_dt*self.dtself.theta += dtheta_vs_dt*self.dtdef draw(self):plt.scatter(self.x, self.y, color='r')plt.axis([-20, 20, -20, 20])plt.grid(linestyle=":")# set circle reference trajectory
refer_traj = np.ones((200,2))
for k in range(200):refer_traj[k,0] = 15*math.cos(2*np.pi/200*k)refer_traj[k,1] = 15*math.sin(2*np.pi/200*k)# draw reference trajectory
plt.plot(refer_traj[:,0], refer_traj[:,1], color='b')# an UGV instance
ugv = UGV_model(0, 0, np.pi/2, 1.6, 2.6, 0.5)# define lookahead
ld = ugv.v*2# Pure Pursuit algorithm
flag = 0for i in range(200):vehicle_state = np.zeros(2)vehicle_state[0] = ugv.xvehicle_state[1] = ugv.ycnt = 0;min_ds = 100000000; Q = []for m in range(flag,200):deltax,deltay = refer_traj[m] - vehicle_stateds = math.sqrt(deltax*deltax+deltay*deltay)if(ds >= ld):temp = [ds,refer_traj[m,0],refer_traj[m,1],m]Q.append(temp)cnt += 1else:passpass# catch the nearest reference pointfor j in range(cnt):if(Q[j][0]<min_ds):flag = Q[j][3]min_ds = Q[j][0]            else:passpassdx,dy = refer_traj[flag] - vehicle_statealpha = math.atan2(dy,dx) - ugv.thetadelta = math.atan(2*np.sin(alpha)*ugv.l/min_ds)ugv.update(delta)ugv.draw()# pursuit the end reference pointif(flag==199):breakelse:pass

仿真的结果如下图所示,蓝色为参考轨迹、红色为跟踪轨迹。从上面的代码不难看出,仿真中采用了“走捷径”的方法,即每次在剩余跟踪点中挑选距离最近的点来跟踪

下面的代码就没有采取“走捷径”的方法。

import numpy as np
import matplotlib.pyplot as plt
import math# set figure size
plt.figure(figsize=(8, 8))# define UGV class
class UGV_model:def __init__(self, x0, y0, theta0, v0, L, T):self.x = x0self.y = y0self.theta = theta0self.v = v0self.l = Lself.dt = Tdef update(self,deltat):dx_vs_dt = self.v*np.cos(self.theta) dy_vs_dt = self.v*np.sin(self.theta)dtheta_vs_dt = self.v*np.tan(deltat)/self.lself.x += dx_vs_dt*self.dtself.y += dy_vs_dt*self.dtself.theta += dtheta_vs_dt*self.dtdef draw(self):plt.scatter(self.x, self.y, color='r')plt.axis([-20, 20, -20, 20])plt.grid(linestyle=":")# set circle reference trajectory
refer_traj = np.ones((200,2))
for k in range(200):refer_traj[k,0] = 15*math.cos(2*np.pi/200*k)refer_traj[k,1] = 15*math.sin(2*np.pi/200*k)# draw reference trajectory
plt.plot(refer_traj[:,0], refer_traj[:,1], color='b')# an UGV instance
ugv = UGV_model(0, 0, np.pi/2, 1.6, 2.6, 0.5)# define lookahead
ld = ugv.v*2# Pure Pursuit algorithm
flag = 0for i in range(200):vehicle_state = np.zeros(2)vehicle_state[0] = ugv.xvehicle_state[1] = ugv.ycnt = 0;Q = []for m in range(flag,200):ds = np.linalg.norm(vehicle_state-refer_traj[m])if(ds >= ld):flag = mbreakelse:passpassds = np.linalg.norm(vehicle_state-refer_traj[flag])dx,dy = refer_traj[flag] - vehicle_statealpha = math.atan2(dy,dx) - ugv.thetadelta = math.atan(2*np.sin(alpha)*ugv.l/ld)ugv.update(delta)ugv.draw()# pursuit the end reference pointif(flag==199):breakelse:pass

仿真结果如下图所示,蓝色为参考轨迹、红色为跟踪轨迹。

不难看出,在计算前轮转角的时候,反正切运算的分母用的是前视距离,而不是实际距离,如果改用实际距离,跟踪会失败,如下图所示。

这篇关于用python实现Pure Pursuit控制算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211159

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM