Python-泰坦尼克号生存率预测

2023-10-14 13:50

本文主要是介绍Python-泰坦尼克号生存率预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接: kaggle算法泰坦尼克号生存率预测.

1. 准备工具
# 导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings#准备前置工作
sns.set(style='darkgrid')   #使用画图风格
warnings.filterwarnings('ignore') #忽略警告
%matplotlib inline
2. 读取数据
train_data = pd.read_csv(r'titanic\train.csv')
test_data = pd.read_csv(r'titanic\test.csv')
3. 先观察数据内容

先观察训练集数据:

train_data.head() 

在这里插入图片描述

  • PassengerId:旅客序号,对生存率无影响
  • Survived:生存(目标值)(“0”代表死亡,“1”代表生存)
  • Pclass:阶层,社会地位 (分为1,2,3阶层,1阶层地位最高)
  • Name:旅客姓名
  • Sex:性别
  • Age:年龄
  • SibSp:船上的兄弟姐妹和配偶数量;
  • Parch:船上的父母子女数量;
  • Ticket:船票
  • Fare:票价
  • Cabin:船舱
  • Embarked:登船点

查看数据基本描述

train_data.describe()

在这里插入图片描述

训练集一共有891人,很明显“年龄”存在缺失值,再具体查看哪些特征值还包含缺失值。

train_data.isnull().sum()

在这里插入图片描述
训练集:“Age”缺失177个,“Cabin”缺失687个,“Embarked”缺失2个。由于“Cabin”缺失数量比较多,该特征值难以填补,预测时将会删除。

再看看测试集特征值缺失情况(方便分析中一起填补):

test_data.isnull().sum()

在这里插入图片描述
测试集:“Age”缺失86个,“Cabin”缺失327个,“Fare”缺失1个。

4. 观察各特征值因素对生存率的影响
4.1 幸存者总体情况
fig,ax=plt.subplots(1,2,figsize=(16,7))
train_data.Survived.value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True,fontsize=13)
ax[0].set_title('Survived',fontsize=13)
ax[0].set_ylabel('')
sns.countplot('Survived',data=train_data,ax=ax[1])
ax[1].set_title('Survived',fontsize=13)
for y, x in enumerate(train_data.Survived.value_counts()):plt.text(y, x , x, fontsize=13)
plt.xticks(fontsize=13)
plt.yticks(fontsize=13)
plt.show()

在这里插入图片描述
训练集中总人数为891人,其中幸存者342人,占比38.4%,生存率比较低。

4.2 性别因素影响的情况
pd.crosstab(train_data['Sex'],train_data['Survived'],margins=True).style.background_gradient(cmap='Greens')

在这里插入图片描述

pd.crosstab(train_data['Sex'],train_data['Survived'],normalize=0,margins=True).style.background_gradient(cmap='Greens')

在这里插入图片描述

fig,ax = plt.subplots(1,2,figsize=(18,8))
train_data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0])
ax[0].set_title('Survived vs Sex',fontsize=13)
sns.countplot('Sex',hue='Survived',data=train_data,ax=ax[1])
ax[1].set_title('Sex:Survived vs Dead',fontsize=13)
plt.show()

在这里插入图片描述

登船人数中,女性一共314人,男性577人,女性生存率为74.20%,男性为18.89%,女性生存率远高于男性。该特征值为重要特征值。

4.3 社会地位因素影响的情况
pd.crosstab(train_data['Pclass'],train_data['Survived'],margins=True).style.background_gradient(cmap='Greens')

在这里插入图片描述

pd.crosstab(train_data['Pclass'],train_data['Survived'],normalize=0,margins=True).style.background_gradient(cmap='Greens')

在这里插入图片描述

fig,ax=plt.subplots(1,2,figsize=(18,8))
train_data['Pclass'].value_counts().plot.bar(color=['darkgreen','lightseagreen','skyblue'],ax=ax[0]) 
ax[0].set_title('Number of Passengers By Pclas',fontsize=13)
ax[0].set_ylabel('Count')
sns.countplot('Pclass',hue='Survived',data=train_data,ax=ax[1])
ax[1].set_title('pclas:Survived vs Dead',fontsize=13)
plt.show()

在这里插入图片描述
1阶层生存率最高,约63%;3阶层人数最多,生存率最低,约24%;2阶层比较均衡。特征值为重要特征值。

4.4 性别与社会地位因素共同影响的情况
pd.crosstab([train_data.Sex,train_data.Survived],train_data.Pclass,margins=True).style.background_gradient(cmap='Greens')

在这里插入图片描述

sns.factorplot('Pclass','Survived',hue='Sex',data=train_data)
plt.show()

在这里插入图片描述
无论处于哪个阶层,女性的生存率始终比男性高,两因素相比,“性别”特征值的重要性大于“阶层”。(女士优先)

4.5 年龄因素影响的情况

年龄存在缺失值,先观察年龄的基本情况。

train_data.Age.describe()

在这里插入图片描述
最小值为0.42岁(5个多月?),最大值为80岁。缺失177个数据。

fig,ax=plt.subplots(1,2,figsize=(18,8))
sns.violinplot('Pclass','Age',hue='Survived',data=train_data,split=True,ax=ax[0])
ax[0].set_title('Pclass and Age vs Survived',fontsize=13)
ax[0].set_yticks(range(0,110,10))
sns.violinplot('Sex','Age',hue='Survived',data=train_data,split=True,ax=ax[1])
ax[1].set_title('Sex and Age vs Survived',fontsize=13)
ax[1].set_yticks(range(0,110,10))
plt.show()

这篇关于Python-泰坦尼克号生存率预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210946

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数