中国雪深长时间序列数据集(1979-2020)

2023-10-14 11:20

本文主要是介绍中国雪深长时间序列数据集(1979-2020),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

中国雪深长时间序列数据集(1979-2020)提供1979年1月1日到2020年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km,是“中国雪深长时间序列数据集(1978-2012)”的升级版本。前言 – 人工智能教程

用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1979-1987年),SSM/I(1987-2007年)和SSMI/S(2008-2020)逐日被动微波亮温数据(EASE-Grid)。通过对不同传感器的亮温进行交叉定标提高亮温数据在时间上的一致性。然后利用车涛博士在Chang算法基础上针对中国地区进行修正的算法进行雪深反演。

该数据集每天1个文件,文件命名方式为:年+天,如1990001表示1990年第1天,1990207表示1990年第207天。

中国境内的积雪分布情况受到多种因素的影响,如地形、气候、季节等。一般来说,积雪主要集中在高山山脉和高纬度地区,特别是青藏高原、阿尔金山、大兴安岭等地区。以下是中国积雪分布情况的一些特点:

1. 西北地区和青藏高原积雪最多。青藏高原的平均积雪深度可达1米以上,而新疆以及陕西、甘肃等省份的高山山区,积雪深度也较大。

2. 华北、东北地区的积雪较多。这些地区的冬季寒冷,降雪量也比较大,因此积雪深度也相对较大。

3. 长江中下游地区以及南方省份积雪较少。由于气候相对温暖,降雪量也较少,因此积雪深度相对较浅。

总体来说,中国的积雪分布情况十分复杂多样,差异较大。

数据集ID: 

TPDC/CHINA_25KM_SNOW_DEPTH_DAILY

时间范围: 1979年-2020年

范围: 全国

来源: 国家青藏高原科学数据中心

复制代码段: 

var images = pie.ImageCollection("TPDC/CHINA_25KM_SNOW_DEPTH_DAILY")

名称类型分辨率(km)单位无效值描述信息
B1float3225cm-1积雪厚度

 

date

string

影像日期

代码:

/**
* @File    :   CHINA_25KM_SNOW_DEPTH_DAILY
* @Desc    :   加载中国雪深长时间序列数据集
*///加载中国边界
var roi = pie.FeatureCollection("RESDC/WORLD_COUNTRY_BOUNDARY").filter(pie.Filter.eq("name", "CHINA")).first().geometry();
//加载2018年1月1日中国雪深数据
var img = pie.ImageCollection('TPDC/CHINA_25KM_SNOW_DEPTH_DAILY').filterDate("2017-12-31", "2018-01-01").first().select("B1").clip(roi);
print(img);
//设定预览参数
visParams = {min: 0, max: 32.5,palette: ['32d3ef','30c8e2','269db1','307ef3','235cb1','0602ff','0502e6','0502ce','0502b8','0502a3','040281','040274']};
//加载显示影像
Map.centerObject(img, 2);
Map.addLayer(img, visParams, "2015-01-01雪深");
// 图例
var data = {title: "雪深(cm)",colors: ['#32d3ef','#30c8e2','#269db1','#307ef3','#235cb1','#0602ff','#0502e6','#0502ce','#0502b8','#0502a3','#040281','#040274'],labels: ["0", "5", "10", "15", "20", "25", "30", "35"],step: 30};
var style = {left: "60%", top: "70%", height: "70px", width: "350px"};
var legend = ui.Legend(data, style);
Map.addUI(legend);

数据引用:
车涛, 戴礼云. 中国雪深长时间序列数据集(1979-2020). 国家青藏高原科学数据中心, 2015. DOI: 10.11888/Geogra.tpdc.270194. CSTR: 18406.11.Geogra.tpdc.270194.

文章引用:
1. Che, T., Li, X., Jin, R., Armstrong, R., &Zhang, T.J. (2008). Snow depth derived from passive microwave remote-sensing data in China. Annals of Glaciology, 49, 145-154.
2. Dai, L.Y., Che, T., &Ding, Y.J. (2015). Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sensing, 7(6), 7212-7230.
3. Dai, L.Y., Che, T., Ding, Y.J., &Hao, X.H. (2017). Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. The Cryosphere, 11(4), 1933-1948.

 

这篇关于中国雪深长时间序列数据集(1979-2020)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210166

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I