中国雪深长时间序列数据集(1979-2020)

2023-10-14 11:20

本文主要是介绍中国雪深长时间序列数据集(1979-2020),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

中国雪深长时间序列数据集(1979-2020)提供1979年1月1日到2020年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km,是“中国雪深长时间序列数据集(1978-2012)”的升级版本。前言 – 人工智能教程

用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1979-1987年),SSM/I(1987-2007年)和SSMI/S(2008-2020)逐日被动微波亮温数据(EASE-Grid)。通过对不同传感器的亮温进行交叉定标提高亮温数据在时间上的一致性。然后利用车涛博士在Chang算法基础上针对中国地区进行修正的算法进行雪深反演。

该数据集每天1个文件,文件命名方式为:年+天,如1990001表示1990年第1天,1990207表示1990年第207天。

中国境内的积雪分布情况受到多种因素的影响,如地形、气候、季节等。一般来说,积雪主要集中在高山山脉和高纬度地区,特别是青藏高原、阿尔金山、大兴安岭等地区。以下是中国积雪分布情况的一些特点:

1. 西北地区和青藏高原积雪最多。青藏高原的平均积雪深度可达1米以上,而新疆以及陕西、甘肃等省份的高山山区,积雪深度也较大。

2. 华北、东北地区的积雪较多。这些地区的冬季寒冷,降雪量也比较大,因此积雪深度也相对较大。

3. 长江中下游地区以及南方省份积雪较少。由于气候相对温暖,降雪量也较少,因此积雪深度相对较浅。

总体来说,中国的积雪分布情况十分复杂多样,差异较大。

数据集ID: 

TPDC/CHINA_25KM_SNOW_DEPTH_DAILY

时间范围: 1979年-2020年

范围: 全国

来源: 国家青藏高原科学数据中心

复制代码段: 

var images = pie.ImageCollection("TPDC/CHINA_25KM_SNOW_DEPTH_DAILY")

名称类型分辨率(km)单位无效值描述信息
B1float3225cm-1积雪厚度

 

date

string

影像日期

代码:

/**
* @File    :   CHINA_25KM_SNOW_DEPTH_DAILY
* @Desc    :   加载中国雪深长时间序列数据集
*///加载中国边界
var roi = pie.FeatureCollection("RESDC/WORLD_COUNTRY_BOUNDARY").filter(pie.Filter.eq("name", "CHINA")).first().geometry();
//加载2018年1月1日中国雪深数据
var img = pie.ImageCollection('TPDC/CHINA_25KM_SNOW_DEPTH_DAILY').filterDate("2017-12-31", "2018-01-01").first().select("B1").clip(roi);
print(img);
//设定预览参数
visParams = {min: 0, max: 32.5,palette: ['32d3ef','30c8e2','269db1','307ef3','235cb1','0602ff','0502e6','0502ce','0502b8','0502a3','040281','040274']};
//加载显示影像
Map.centerObject(img, 2);
Map.addLayer(img, visParams, "2015-01-01雪深");
// 图例
var data = {title: "雪深(cm)",colors: ['#32d3ef','#30c8e2','#269db1','#307ef3','#235cb1','#0602ff','#0502e6','#0502ce','#0502b8','#0502a3','#040281','#040274'],labels: ["0", "5", "10", "15", "20", "25", "30", "35"],step: 30};
var style = {left: "60%", top: "70%", height: "70px", width: "350px"};
var legend = ui.Legend(data, style);
Map.addUI(legend);

数据引用:
车涛, 戴礼云. 中国雪深长时间序列数据集(1979-2020). 国家青藏高原科学数据中心, 2015. DOI: 10.11888/Geogra.tpdc.270194. CSTR: 18406.11.Geogra.tpdc.270194.

文章引用:
1. Che, T., Li, X., Jin, R., Armstrong, R., &Zhang, T.J. (2008). Snow depth derived from passive microwave remote-sensing data in China. Annals of Glaciology, 49, 145-154.
2. Dai, L.Y., Che, T., &Ding, Y.J. (2015). Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sensing, 7(6), 7212-7230.
3. Dai, L.Y., Che, T., Ding, Y.J., &Hao, X.H. (2017). Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. The Cryosphere, 11(4), 1933-1948.

 

这篇关于中国雪深长时间序列数据集(1979-2020)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/210166

相关文章

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

Java如何根据word模板导出数据

《Java如何根据word模板导出数据》这篇文章主要为大家详细介绍了Java如何实现根据word模板导出数据,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... pom.XML文件导入依赖 <dependency> <groupId>cn.afterturn</groupId>

Python实现获取带合并单元格的表格数据

《Python实现获取带合并单元格的表格数据》由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,所以本文我们就来聊聊如何使用Python实现获取带合并单元格的表格数据吧... 由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,现将将封装成类,并通过调用list_exc

Mysql数据库中数据的操作CRUD详解

《Mysql数据库中数据的操作CRUD详解》:本文主要介绍Mysql数据库中数据的操作(CRUD),详细描述对Mysql数据库中数据的操作(CRUD),包括插入、修改、删除数据,还有查询数据,包括... 目录一、插入数据(insert)1.插入数据的语法2.注意事项二、修改数据(update)1.语法2.有

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R