Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册

2023-10-14 06:58

本文主要是介绍Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux内核 eBPF基础
perf(2):性能管理单元PMU的注册


荣涛
2021年5月18日

  • 本文相关注释代码:https://github.com/Rtoax/linux-5.10.13
  • Linux内核性能架构:perf_event

1. perf类型

include\uapi\linux\perf_event.h中有:

/** attr.type*/
enum perf_type_id { /* perf 类型 */PERF_TYPE_HARDWARE			= 0,    /* 硬件 */PERF_TYPE_SOFTWARE			= 1,    /* 软件 */PERF_TYPE_TRACEPOINT		= 2,    /* 跟踪点 */PERF_TYPE_HW_CACHE			= 3,    /* 硬件cache */PERF_TYPE_RAW				= 4,    /* RAW */PERF_TYPE_BREAKPOINT		= 5,    /* 断点 */PERF_TYPE_MAX,				/* non-ABI */
};

他们是传入性能管理单元PMU注册函数perf_pmu_register的字段type。列出注册的PMU:

[rongtao@localhost src]$ grep -r "perf_pmu_register" | grep "\""
arch/x86/events/intel/bts.c:	return perf_pmu_register(&bts_pmu, "intel_bts", -1);
arch/x86/events/intel/pt.c:	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
arch/x86/events/amd/power.c:	ret = perf_pmu_register(&pmu_class, "power", -1);
arch/x86/events/core.c:	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
arch/x86/events/msr.c:	perf_pmu_register(&pmu_msr, "msr", -1);
arch/x86/events/rapl.c:	ret = perf_pmu_register(&rapl_pmus->pmu, "power", -1);
kernel/events/hw_breakpoint.c:	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
kernel/events/core.c:	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
kernel/events/core.c:	perf_pmu_register(&perf_kprobe, "kprobe", -1);
kernel/events/core.c:	perf_pmu_register(&perf_uprobe, "uprobe", -1);
kernel/events/core.c:	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);kernel/events/core.c:	perf_pmu_register(&perf_cpu_clock, NULL, -1);
kernel/events/core.c:	perf_pmu_register(&perf_task_clock, NULL, -1);

2. perf_pmu_register

int perf_pmu_register(struct pmu *pmu, const char *name, int type)

这里需要注意,函数perf_pmu_register是非常重要的注册函数,注册的pmu将加入全局链表pmus中:

static LIST_HEAD(pmus);

函数perf_pmu_register首先申请per-cpu变量:

pmu->pmu_disable_count = alloc_percpu(int);

接着,如果类型不是PERF_TYPE_SOFTWARE,将分配一个ID(前提是name没有设定,如perf_cpu_clock

if (type != PERF_TYPE_SOFTWARE) {if (type >= 0)max = type;/* 分配一个ID */ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);if (ret < 0)goto free_pdc;WARN_ON(type >= 0 && ret != type);type = ret;
}

然后,申请一个设备:

	if (pmu_bus_running/* perf_event_sysfs_init() 中被设置 为 1 */) {ret = pmu_dev_alloc(pmu);   /* 分配一个设备 device- /sys/devices/ */if (ret)goto free_idr;}

接下来这段代码表明,每个hw只能注册一次:

	if (pmu->task_ctx_nr == perf_hw_context) {static int hw_context_taken = 0;/** Other than systems with heterogeneous CPUs, it never makes* sense for two PMUs to share perf_hw_context. PMUs which are* uncore must use perf_invalid_context.*/if (WARN_ON_ONCE(hw_context_taken &&!(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))pmu->task_ctx_nr = perf_invalid_context;hw_context_taken = 1;}

否则,其将被设置为perf_invalid_context。然后为每个CPU分配上下文:

    pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);

紧接着,进行初始化:

	for_each_possible_cpu(cpu) {    /* 遍历 CPU */struct perf_cpu_context *cpuctx;cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);    /* 1.获取 CPU 的ctx */__perf_event_init_context(&cpuctx->ctx);            /* 2.初始化这个ctx */lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);/*3.初始化lockdep  */lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);cpuctx->ctx.pmu = pmu;                              /* 4.指向这个PMU */cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);/* 5.是否在线标记 */__perf_mux_hrtimer_init(cpuctx, cpu);               /* 6.高精度定时器,function=perf_mux_hrtimer_handler */cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);/*  */cpuctx->heap = cpuctx->heap_default;    /* 默认使用2个 */}

其中__perf_event_init_context初始化struct perf_event_context结构:

/** Initialize the perf_event context in a task_struct:*/
static void __perf_event_init_context(struct perf_event_context *ctx)   /* 初始化CPU ctx */
{raw_spin_lock_init(&ctx->lock);mutex_init(&ctx->mutex);INIT_LIST_HEAD(&ctx->active_ctx_list);perf_event_groups_init(&ctx->pinned_groups);perf_event_groups_init(&ctx->flexible_groups);INIT_LIST_HEAD(&ctx->event_list);INIT_LIST_HEAD(&ctx->pinned_active);INIT_LIST_HEAD(&ctx->flexible_active);refcount_set(&ctx->refcount, 1);
}

__perf_mux_hrtimer_init初始化一个高精度定时器,

static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)   /* 高精度定时器 */
{struct hrtimer *timer = &cpuctx->hrtimer;struct pmu *pmu = cpuctx->ctx.pmu;u64 interval;/* no multiplexing needed for SW PMU */if (pmu->task_ctx_nr == perf_sw_context)return;/** check default is sane, if not set then force to* default interval (1/tick)*/interval = pmu->hrtimer_interval_ms;if (interval < 1)interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; /* 小于1ms,就让他是 1ms */cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);raw_spin_lock_init(&cpuctx->hrtimer_lock);hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);timer->function = perf_mux_hrtimer_handler; /* 处理函数 */
}

需要注意一下几点:

  • 如果是软件上下文perf_sw_context,不创建定时器;
  • 如果ioctl设置的到期时间小于1ms,将其设置为1ms
  • 会调函数为perf_mux_hrtimer_handler

在获取到CPU上下文后,给没有初始化的PMU函数指针赋值:

    /*  */if (!pmu->start_txn) {if (pmu->pmu_enable) {/** If we have pmu_enable/pmu_disable calls, install* transaction stubs that use that to try and batch* hardware accesses.*/pmu->start_txn  = perf_pmu_start_txn;pmu->commit_txn = perf_pmu_commit_txn;pmu->cancel_txn = perf_pmu_cancel_txn;} else {pmu->start_txn  = perf_pmu_nop_txn;pmu->commit_txn = perf_pmu_nop_int;pmu->cancel_txn = perf_pmu_nop_void;}}/* 使能 */if (!pmu->pmu_enable) {pmu->pmu_enable  = perf_pmu_nop_void;pmu->pmu_disable = perf_pmu_nop_void;}/* 检测周期 ioctl(PERF_EVENT_IOC_PERIOD) */if (!pmu->check_period)pmu->check_period = perf_event_nop_int;/*  */if (!pmu->event_idx)pmu->event_idx = perf_event_idx_default;

下面是将这个PMU添加到pmus链表中:

	/** Ensure the TYPE_SOFTWARE PMUs are at the head of the list,* since these cannot be in the IDR. This way the linear search* is fast, provided a valid software event is provided.*/if (type == PERF_TYPE_SOFTWARE || !name)list_add_rcu(&pmu->entry, &pmus);   /* 软件 或者 name=NULL */elselist_add_tail_rcu(&pmu->entry, &pmus);/*  */

需要注意的是,软件类型的PMU将放到链表开头,以提高线性查询速度。

3. 例: software

//kernel/events/core.c
static struct pmu/* 性能监控单元 */ perf_swevent = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= perf_swevent_init,.add		= perf_swevent_add,.del		= perf_swevent_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,
};perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);

3.1. perf_swevent_init

4. 例: perf_cpu_clock

//kernel/events/core.c
static struct pmu perf_cpu_clock = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= cpu_clock_event_init,.add		= cpu_clock_event_add,.del		= cpu_clock_event_del,.start		= cpu_clock_event_start,.stop		= cpu_clock_event_stop,.read		= cpu_clock_event_read,
};perf_pmu_register(&perf_cpu_clock, NULL, -1);

5. 例: perf_task_clock

//kernel/events/core.c
static struct pmu perf_task_clock = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= task_clock_event_init,.add		= task_clock_event_add,.del		= task_clock_event_del,.start		= task_clock_event_start,.stop		= task_clock_event_stop,.read		= task_clock_event_read,
};perf_pmu_register(&perf_task_clock, NULL, -1);

6. 例: kprobe

//kernel/events/core.c
static struct pmu perf_kprobe = {.task_ctx_nr	= perf_sw_context,.event_init	= perf_kprobe_event_init,.add		= perf_trace_add,.del		= perf_trace_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,.attr_groups	= kprobe_attr_groups,
};perf_pmu_register(&perf_kprobe, "kprobe", -1);

7. 例: tracepoint

//kernel/events/core.c
static struct pmu perf_tracepoint = {.task_ctx_nr	= perf_sw_context,.event_init	= perf_tp_event_init,.add		= perf_trace_add,.del		= perf_trace_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,
};perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);

8. pmu->event_init

perf_event_allocperf_init_eventperf_try_init_eventpmu->event_init(event);

而调用了perf_event_alloc的有:

  • perf_event_open
  • perf_event_create_kernel_counter
  • fork|clone
kernel_clonecopy_processperf_event_init_taskperf_event_init_contextinherit_task_groupinherit_groupinherit_eventperf_event_alloc

9. pmu->add

perf_event_enable_perf_event_enable__perf_event_enablectx_sched_inctx_flexible_sched_in|ctx_pinned_sched_inmerge_sched_ingroup_sched_inevent_sched_inevent->pmu->add(event, PERF_EF_START)

10. pmu->del

perf_event_disable_perf_event_disable__perf_event_disablegroup_sched_outevent_sched_outevent->pmu->del(event, 0);

11. pmu->start

12. pmu->stop

13. pmu->read

14. 相关链接

  • 注释源码:https://github.com/Rtoax/linux-5.10.13
  • Linux内核 eBPF基础:perf(1):perf_event在内核中的初始化
  • Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册
  • Linux kernel perf architecture
  • Linux perf 1.1、perf_event内核框架
  • Linux内核性能架构:perf_event

这篇关于Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208876

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境