Google Earth Engine(GEE)——全球红树林数据集

2023-10-14 02:50

本文主要是介绍Google Earth Engine(GEE)——全球红树林数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球红树林观察
这项研究使用了日本宇宙航空研究开发机构(JAXA)1996年至2020年11个历时的L波段合成孔径雷达(SAR)全球马赛克数据集,以开发全球红树林范围和变化的长期时间序列。该研究采用了地图到图像的方法来检测变化,其中基线地图(GMW v2.5)使用阈值处理和背景红树林变化掩码进行更新。这种方法适用于所有图像-日期对,在每个纪元产生10张地图,这些地图被汇总以产生全球红树林时间序列。由此产生的红树林范围地图的估计准确率为87.4%(95th conf.int.:86.2-88.6%),尽管单个增益和损失变化类别的准确率较低,分别为58.1%(52.4-63.9%)和60.6%(56.1-64.8 %)。

误差的来源包括SAR马赛克数据集的错误登记,这只能被部分纠正,但也包括红树林的零散区域的混乱,如水产养殖池塘周围。总体而言,1996年确定的红树林面积为152,604平方公里(133,996-176,910),减少了-5,245平方公里(-13,587-3686),导致2020年的总面积为147,359平方公里(127,925-168,895),估计24年内损失3.4%。全球红树林观察3.0版代表了迄今为止全球红树林变化的最全面的记录,预计将支持一系列广泛的活动,包括对全球沿海环境的持续监测、确定和评估保护目标的进展、保护区规划和全球红树林生态系统的风险评估。

数据连接:

You can download the dataset here and read the paper here

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

引文:

Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, T.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L-M. Global
Mangrove Extent Change 1996 – 2020: Global Mangrove Watch Version 3.0. Remote Sensing. 2022

数据集引文:

Bunting, Pete, Rosenqvist, Ake, Hilarides, Lammert, Lucas, Richard, Thomas, Nathan, Tadono , Takeo, Worthington, Thomas, Spalding , Mark, Murray,
Nicholas, & Rebelo, Lisa-Maria. (2022). Global Mangrove Watch (1996 - 2020) Version 3.0 Dataset (3.0) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.6894273

 

GEE代码

var extent_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/GMW_V3");
var extent_1996 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_1996_vec");
var extent_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2007_vec");
var extent_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2008_vec");
var extent_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2009_vec");
var extent_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2010_vec");
var extent_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2015_vec");
var extent_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2016_vec");
var extent_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2017_vec");
var extent_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2018_vec");
var extent_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2019_vec");
var extent_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2020_vec");

自1996年的变化

var change_f1996_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/change_f1996");
var change_f1996_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2007_vec");
var change_f1996_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2008_vec");
var change_f1996_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2009_vec");
var change_f1996_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2010_vec");
var change_f1996_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2015_vec");
var change_f1996_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2016_vec");
var change_f1996_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2017_vec");
var change_f1996_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2018_vec");
var change_f1996_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2019_vec");
var change_f1996_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2020_vec");

合并的数据

var gmw_union_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_mng_union");
var gmw_union_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_union_vec");
var gmw_core_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_mng_core");
var gmw_core_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_core_vec");

Earth Engine Snippet: Tiles¶

var tiles = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/gmw_v3_tiles");

代码连接:https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLOBAL-MANGROVE-WATCH

Resolution: approx 30m

License & Usage¶

Attribution 4.0 International CC BY 4.0.

Curated in GEE by: Samapriya Roy

Keywords: Global, Mangrove, GMW, 1996, 2020

Last updated: 2022-09-16

前言 – 床长人工智能教程

这篇关于Google Earth Engine(GEE)——全球红树林数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207632

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名