Google Earth Engine(GEE)——全球红树林数据集

2023-10-14 02:50

本文主要是介绍Google Earth Engine(GEE)——全球红树林数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球红树林观察
这项研究使用了日本宇宙航空研究开发机构(JAXA)1996年至2020年11个历时的L波段合成孔径雷达(SAR)全球马赛克数据集,以开发全球红树林范围和变化的长期时间序列。该研究采用了地图到图像的方法来检测变化,其中基线地图(GMW v2.5)使用阈值处理和背景红树林变化掩码进行更新。这种方法适用于所有图像-日期对,在每个纪元产生10张地图,这些地图被汇总以产生全球红树林时间序列。由此产生的红树林范围地图的估计准确率为87.4%(95th conf.int.:86.2-88.6%),尽管单个增益和损失变化类别的准确率较低,分别为58.1%(52.4-63.9%)和60.6%(56.1-64.8 %)。

误差的来源包括SAR马赛克数据集的错误登记,这只能被部分纠正,但也包括红树林的零散区域的混乱,如水产养殖池塘周围。总体而言,1996年确定的红树林面积为152,604平方公里(133,996-176,910),减少了-5,245平方公里(-13,587-3686),导致2020年的总面积为147,359平方公里(127,925-168,895),估计24年内损失3.4%。全球红树林观察3.0版代表了迄今为止全球红树林变化的最全面的记录,预计将支持一系列广泛的活动,包括对全球沿海环境的持续监测、确定和评估保护目标的进展、保护区规划和全球红树林生态系统的风险评估。

数据连接:

You can download the dataset here and read the paper here

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

引文:

Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, T.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L-M. Global
Mangrove Extent Change 1996 – 2020: Global Mangrove Watch Version 3.0. Remote Sensing. 2022

数据集引文:

Bunting, Pete, Rosenqvist, Ake, Hilarides, Lammert, Lucas, Richard, Thomas, Nathan, Tadono , Takeo, Worthington, Thomas, Spalding , Mark, Murray,
Nicholas, & Rebelo, Lisa-Maria. (2022). Global Mangrove Watch (1996 - 2020) Version 3.0 Dataset (3.0) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.6894273

 

GEE代码

var extent_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/GMW_V3");
var extent_1996 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_1996_vec");
var extent_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2007_vec");
var extent_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2008_vec");
var extent_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2009_vec");
var extent_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2010_vec");
var extent_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2015_vec");
var extent_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2016_vec");
var extent_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2017_vec");
var extent_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2018_vec");
var extent_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2019_vec");
var extent_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2020_vec");

自1996年的变化

var change_f1996_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/change_f1996");
var change_f1996_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2007_vec");
var change_f1996_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2008_vec");
var change_f1996_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2009_vec");
var change_f1996_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2010_vec");
var change_f1996_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2015_vec");
var change_f1996_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2016_vec");
var change_f1996_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2017_vec");
var change_f1996_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2018_vec");
var change_f1996_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2019_vec");
var change_f1996_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2020_vec");

合并的数据

var gmw_union_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_mng_union");
var gmw_union_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_union_vec");
var gmw_core_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_mng_core");
var gmw_core_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_core_vec");

Earth Engine Snippet: Tiles¶

var tiles = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/gmw_v3_tiles");

代码连接:https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLOBAL-MANGROVE-WATCH

Resolution: approx 30m

License & Usage¶

Attribution 4.0 International CC BY 4.0.

Curated in GEE by: Samapriya Roy

Keywords: Global, Mangrove, GMW, 1996, 2020

Last updated: 2022-09-16

前言 – 床长人工智能教程

这篇关于Google Earth Engine(GEE)——全球红树林数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207632

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒