【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文

本文主要是介绍【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

10月26日,深度学习元老Hinton的NIPS2017 Capsule论文《Dynamic Routing Between Capsules》终于在arxiv上发表。今天相关关于这篇论文的TensorFlow\Pytorch\Keras实现相继开源出来,让我们来看下。

719e11ff6aba2d68a205b6f28c68dd180226a7b4

论文地址:https://arxiv.org/pdf/1710.09829.pdf

Capsule 是一组神经元,其活动向量(activity vector)表示特定实体类型的实例化参数,如对象或对象部分。我们使用活动向量的长度表征实体存在的概率,向量方向表示实例化参数。同一水平的活跃 capsule 通过变换矩阵对更高级别的 capsule 的实例化参数进行预测。当多个预测相同时,更高级别的 capsule 变得活跃。我们展示了判别式训练的多层 capsule 系统在 MNIST 数据集上达到了最好的性能效果,比识别高度重叠数字的卷积网络的性能优越很多。为了达到这些结果,我们使用迭代的路由协议机制:较低级别的 capsule 偏向于将输出发送至高级别的 capsule,有了来自低级别 capsule 的预测,高级别 capsule 的活动向量具备较大的标量积。

CapsNet-PyTorch

python依赖包

  • Python 3
  • PyTorch
  • TorchVision
  • TorchNet
  • TQDM
  • Visdom

使用说明

第一步 在capsule_network.py文件中设置训练epochs,batch size等


BATCH_SIZE = 100NUM_CLASSES = 10NUM_EPOCHS = 30NUM_ROUTING_ITERATIONS = 3


Step 2 开始训练. 如果本地文件夹中没有MNIST数据集,将运行脚本自动下载到本地. 确保 PyTorch可视化工具Visdom正在运行。


$ sudo python3 -m visdom.server & python3 capsule_network.py


基准数据

经过30个epoche的训练手写体数字的识别率达到99.48%. 从下图的训练进度和损失图的趋势来看,这一识别率可以被进一步的提高 。

9f94db0c9075c534d2b438d8966d95eb09dcef1f

采用了PyTorch中默认的Adam梯度优化参数并没有用到动态学习率的调整。 batch size 使用100个样本的时候,在雷蛇GTX 1050 GPU上每个Epochs 用时3分钟。

待完成

  • 扩展到除MNIST以外的其他数据集。

Credits

主要借鉴了以下两个 TensorFlow 和 Keras 的实现:

  1. Keras implementation by @XifengGuo
  2. TensorFlow implementation by @naturomics

Many thanks to @InnerPeace-Wu for a discussion on the dynamic routing procedure outlined in the paper.


CapsNet-Tensorflow


Python依赖包

  • Python
  • NumPy
  • Tensorflow (I'm using 1.3.0, not yet tested for older version)
  • tqdm (for displaying training progress info)
  • scipy (for saving image)

使用说明

训练

第一步 用git命令下载代码到本地.


$ git clone https://github.com/naturomics/CapsNet-Tensorflow.git
$ cd CapsNet-Tensorflow


第二步 下载MNIST数据集(http://yann.lecun.com/exdb/mnist/), 移动并解压到data/mnist 文件夹(当你用复制wget 命令到你的终端是注意渠道花括号里的反斜杠)


$ mkdir -p data/mnist
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/{train-images-idx3-ubyte.gz,train-labels-idx1-ubyte.gz,t10k-images-idx3-ubyte.gz,t10k-labels-idx1-ubyte.gz}
$ gunzip data/mnist/*.gz


第三步 开始训练:


$ pip install tqdm  # install it if you haven't installed yet
$ python train.py


tqdm包并不是必须的,只是为了可视化训练过程。如果你不想要在train.py中将循环for in step ... 改成 ``for step in range(num_batch)就行了。

评估


$ python eval.py --is_training False


结果

错误的运行结果(Details in Issues #8):

  • training loss 
d39afb6441fad222de027dafb71542e163ccc50e
6ff053759b0d6c567fae0fd2cf7417cd859268b4
  • test acc

b73d9cb682dbd62a620309e59815252be2a8854a
f8fec5951f2d31b9db1776a9f85d76caf0b51b56

4d1af1011ad3d14b2186bd503c27c18394fb5927

Results after fixing Issues #8:

关于capsule的一点见解

  1. 一种新的神经单元(输入向量输出向量,而不是标量)
  2. 常规算法类似于Attention机制
  3. 总之是一项很有潜力的工作,有很多工作可以在之上开展


待办:

  • 完成MNIST的实现Finish the MNIST version of capsNet (progress:90%)
  • 在其他数据集上验证capsNet
  • 调整模型结构
  • 一篇新的投稿在ICLR2018上的后续论文(https://openreview.net/pdf?id=HJWLfGWRb) about capsules(submitted to ICLR 2018)

CapsNet-Keras


依赖包

  • Keras
  • matplotlib

使用方法

训练

第一步 安装 Keras:

$ pip install keras

第二步 用 git命令下载代码到本地.

$ git clone https://github.com/xifengguo/CapsNet-Keras.git
$ cd CapsNet-Keras

第三步 训练:

$ python capsulenet.py

一次迭代训练(default 3).

$ python capsulenet.py --num_routing 1

其他参数包括想 batch_size, epochs, lam_recon, shift_fraction, save_dir 可以以同样的方式使用。 具体可以参考 capsulenet.py

测试

假设你已经有了用上面命令训练好的模型,训练模型将被保存在 result/trained_model.h5. 现在只需要使用下面的命令来得到测试结果。

$ python capsulenet.py --is_training 0 --weights result/trained_model.h5

将会输出测试结果并显示出重构后的图片。测试数据使用的和验证集一样 ,同样也可以很方便的在新数据上验证,至于要按照你的需要修改下代码就行了。

如果你的电脑没有GPU来训练模型,你可以从https://pan.baidu.com/s/1hsF2bvY下载预先训练好的训练模型

结果

主要结果
运行 python capsulenet.py: epoch=1 代表训练一个epoch 后的结果 在保存的日志文件中,epoch从0开始。

66cf69a3316550a23f64ca342a079cb31cf07342

损失和准确度:

669b7258294085504f8de6d70bf0e809e35c7005

一次常规迭代后的结果

运行 python CapsNet.py --num_routing 1 


85eefd6b8ec6475ea939419d990ced0f3c063ae8

测试结果每个 epoch 在单卡GTX 1070 GPU上大概需要110s 注释: 训练任然是欠拟合的,欢迎在你自己的机器上验证。学习率decay还没有经过调试, 我只是试了一次,你可以接续微调。

运行 python capsulenet.py --is_training 0 --weights result/trained_model.h5


模型结构:df996811608d0f97086ea1cf59161dd60392293c

04c4167084109477ad7600a8448ed141dea7b8e5

其他实现代码

  • Kaggle (this version as self-contained notebook):
  • MNIST Dataset running on the standard MNIST and predicting for test data
  • MNIST Fashion running on the more challenging Fashion images.
  • TensorFlow:
  • naturomics/CapsNet-Tensorflow
  • Very good implementation. I referred to this repository in my code.
  • InnerPeace-Wu/CapsNet-tensorflow
  • I referred to the use of tf.scan when optimizing my CapsuleLayer.
  • LaoDar/tf_CapsNet_simple
  • PyTorch:
  • nishnik/CapsNet-PyTorch
  • timomernick/pytorch-capsule
  • gram-ai/capsule-networks
  • andreaazzini/capsnet.pytorch
  • leftthomas/CapsNet
  • MXNet:
  • AaronLeong/CapsNet_Mxnet
  • Lasagne (Theano):
  • DeniskaMazur/CapsNet-Lasagne
  • Chainer:
  • soskek/dynamic_routing_between_capsules

参考网址链接:

https://github.com/gram-ai/capsule-networks

https://github.com/naturomics/CapsNet-Tensorflow

https://github.com/XifengGuo/CapsNet-Keras


原文发布时间为:2017-11-5

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文

这篇关于【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_33851429/article/details/90329972
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/205742

相关文章

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

SQL Server身份验证模式步骤和示例代码

《SQLServer身份验证模式步骤和示例代码》SQLServer是一个广泛使用的关系数据库管理系统,通常使用两种身份验证模式:Windows身份验证和SQLServer身份验证,本文将详细介绍身份... 目录身份验证方式的概念更改身份验证方式的步骤方法一:使用SQL Server Management S

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

C#实现访问远程硬盘的图文教程

《C#实现访问远程硬盘的图文教程》在现实场景中,我们经常用到远程桌面功能,而在某些场景下,我们需要使用类似的远程硬盘功能,这样能非常方便地操作对方电脑磁盘的目录、以及传送文件,这次我们将给出一个完整的... 目录引言一. 远程硬盘功能展示二. 远程硬盘代码实现1. 底层业务通信实现2. UI 实现三. De

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动