推荐系统遇上深度学习(一二四)-[美团]面向大规模推荐系统的双重增强双塔模型...

本文主要是介绍推荐系统遇上深度学习(一二四)-[美团]面向大规模推荐系统的双重增强双塔模型...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8aa958ce07556cb62c21ccfabe7d40e0.png

各位小伙伴们中秋快乐吖!今天给大家带来一篇美团在DLP-KDD 2021上中稿的一篇论文,主要的出发点是解决双塔模型中两塔之间缺乏信息交互,以及在美团首页推荐中,面临多场景、多业务融合且不同业务类别分布不均衡的特定业务问题。一起来学习一下。

1、背景

在大规模工业界推荐系统的召回阶段,大都采用的是双塔模型,即通过query tower(user tower)和item tower分别得到query(user)和item的向量表示,并通过cosine距离计算二者的相似度,进而选择相似度高的item进入到排序阶段。传统的双塔模型面临以下两方面的问题:

1)两个塔之间缺乏信息交互,影响模型的收益空间
2)在美团首页推荐或其他的推荐场景下,item的种类是十分丰富的且非常不平衡的,那么模型的训练由主要的种类所主导,对于数量较小的种类的item效果会受到影响。

为了解决以上两方面的问题,论文提出了双重增强双塔模型(Dual Augmented Two-tower Model,简称DAT)。论文设计了Adaptive-Mimic Mechanism,来为每一个query和item学习一个增强向量,增强向量代表了来自另一个塔的有用信息;同时,论文还在训练阶段引入了Category Alignment Loss来缓解类别不平衡的问题,一起来看一下。

2、DAT模型介绍

模型的整体结构如下图所示:

0d3387e4c8f9dce1f40f4e7afca93004.png

接下来,根据如上的模型结构图,我们进行详细的介绍:

2.1 Embedding layer

Embedding层无需进行过多的介绍,将query和item对应的离散特征转换为对应的Embedding。

2.2 Dual Augmented layer

对于每一个query和候选item,赋予一个对应的增强向量au和av,并与Embedding层得到的Embedding进行拼接,作为两个塔的输入。如对于uid=253,city=SH,gender=male的用户,以及iid=149,price=10,class=cate的item,对应的模型输入为:

2d27325066dd9fa80d481ba8224e60b1.png

随后,两个输入向量输入到各自的塔中,经过多层全连接网络,以及最后的L2标准化层,得到输出Embedding表示,计作pu和pv:

4ae3f11e27415c668e94b72db3fffa91.png

那么增强向量代表什么信息呢?同时如何对增强向量进行训练呢?论文设计了Adaptive-Mimic Mechanism (AMM),其中最主要的是设计了mimic loss,该loss的主要作用是让增强向量来拟合相应query或着item在另一个塔中所有正样本的输出向量表示。感觉比较绕,但通过下面的公式可以更加清楚的理解:

a100ec28a03cf9954efd76ddc42a0adf.png

以lossu为例,如果label即y=0,则不产生损失,若y=1,则增强向量与另一个塔的输出向量越接近,则损失越小。也就是说,增强向量是对该query或item所有可能匹配的正样本信息的综合表示。而在训练增强向量的过程中,需要使用stop gradient策略来冻结pu和pv。

2.3 Category Alignment

在工业场景下,不同item的类型多种多样,而且分布十分不均匀,双塔模型对于数量较少的类别的效果会较差。为了解决这个问题,论文在训练阶段引入了Category Alignment Loss (CAL),将从数量较多的类别中学习到的信息迁移到数量较小的类别中。CAL计算主类别和其他类别的协方差矩阵二阶矩,降低类别间的差距:

f67f369cbf5abdaf110a14e79d8caae4.png

ea306db920a07ece287e676968b2380b.png

其中,C()代表协方差矩阵,Smajor代表batch中主要类别的输出向量集合。S2,S3,..,Sn代表剩余类别的输出向量集合。

Alignment Loss在迁移学习中应用较多,来自论文《Deep CORAL: Correlation Alignment for Deep Domain Adaptation》。感兴趣的可以阅读论文

2.4 Model Training

对于任意正样本对,采样S个负样本对,那么双塔模型的主loss计算如下:

936b53f0360af9cc307f9e80670f35b7.png

加入上述的mimic loss和Category Alignment Loss后,总的loss计算如下:

d51d4718433671027b438ab201905b3f.png

3、实验结果

离线和在线实验都证明了DAT模型的有效性,实验结果如下:

8c3278f5590035edf6709e5160ba8790.png

162d691a018b0d966233253b442aae02.png

好了,本文就介绍到这里,感兴趣的同学可以阅读原文~

推荐系统遇上深度学习(一二三)-[阿里]去噪用户感知记忆网络DUMN

2021-09-21

bc8a6b6cae119e825771350cec36724d.png

推荐系统遇上深度学习(一二二)-[阿里]通过孪生掩码层来高效的学习特征表示向量

2021-08-28

cda53dba4eb93bfca5ec003b0b3f07d9.png

这篇关于推荐系统遇上深度学习(一二四)-[美团]面向大规模推荐系统的双重增强双塔模型...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/205425

相关文章

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案

《电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案》最近有不少兄弟反映,电脑突然弹出“mfc100u.dll已加载,但找不到入口点”的错误提示,导致一些程序无法正... 在计算机使用过程中,我们经常会遇到一些错误提示,其中最常见的就是“找不到指定的模块”或“缺少某个DL

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1