STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现

2023-10-13 12:59

本文主要是介绍STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1- Systick滴答定时器
    • 2- HAL_Init()初始化配置使能systick(4MHZ)
    • 3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ
    • 4- Systick如何实现中断处理
    • 5- HAL_Delay()实现原理分析
    • 6- 微妙级延时实现


1- Systick滴答定时器

Systick是一个24位的向下递的计数器,每当Systick从时钟源到来一个时钟,其值就会减1,而一般我们将Systick的时钟源设置为系统时钟HCLK(80MHZ)(STM32中为80MHZ)这样也就意味着每过1/80M秒Systick里的计数器将会减1,当重装载数值寄存器里的值递减为0的时候,系统定时器就会产生一次中断,这样就有时间了。之后CPU自动重新装载计数器值并逐渐递减循环往复。
这样讲不怎么听得懂,我们需要了解systick是怎么工作的来进一步了解。


2- HAL_Init()初始化配置使能systick(4MHZ)

最开始CPU是没有使能的,用的是系统的内部高速晶振MSI先工作,也就是4MHZ。HAL_Init()函数中也就是使用的内部晶振(4MHZ)使能,在调用下一个函数SystemClock_Config之后使用的就是外部晶振80MHZ了。并且也会修改systick也使用80MHZ的时钟源。
在这里插入图片描述

在main()函数里我们可以看见HAL_Init()函数。
在这里插入图片描述

进入函数我们可以看见最后调用了HAL_InitTick()函数
在这里插入图片描述

再进入HAL_InitTick()这个函数中我们需要关注的是这个函数HAL_SYSTICK_Config(),也就是怎么样计算的:
4000 000 / 1000 / 1:表示从4000减到0代表1ms
4000 000 / 1000 / 10:表示从4000减到0代表10ms
4000 000 / 1000 / 100:表示从4000减到0代表100ms

HAL_SYSTICK_Config(SystemCoreClock / (1000U / (uint32_t)uwTickFreq
uint32_t SystemCoreClock = 4000000U;// 4MHZ
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT;  /* 1KHz  1ms */
typedef enum
{HAL_TICK_FREQ_10HZ         = 100U,//100msHAL_TICK_FREQ_100HZ        = 10U,//10msHAL_TICK_FREQ_1KHZ         = 1U,HAL_TICK_FREQ_DEFAULT      = HAL_TICK_FREQ_1KHZ  //1ms
} HAL_TickFreqTypeDef;

3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ

当然,我们不能一直使用内部晶振,因为这个不稳定,还是需要外部晶振使能来使用80MHZ的时钟源。

在这里插入图片描述
进入SystemClock_Config()函数中,我们可以看见在最后调用了HAL_RCC_ClockConfig配置systick
在这里插入图片描述

在HAL_RCC_ClockConfig最后我们可以看见,将全局变量SystemCoreClock设置为80MHZ,并且调用HAL_InitTick(),这样systick的时钟源就变成了80MHZ了。

/* Update the SystemCoreClock global variable *//*更新SystemCoreClock全局变量设置为80MHZ*/SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);/* Configure the source of time base considering new system clocks settings*//*考虑新的系统时钟设置,配置时间基准的来源*/status = HAL_InitTick(uwTickPrio);

4- Systick如何实现中断处理

80 000 000 / 1000 / 1表示: 下降80 000次代表1ms,也就意味着产生一次中断,会触发中断处理程序,执行SysTick_Handler函数。
在这里插入图片描述

SysTick_Handler()函数调用了HAL_IncTick()函数。

void SysTick_Handler(void)
{/* USER CODE BEGIN SysTick_IRQn 0 *//* USER CODE END SysTick_IRQn 0 */HAL_IncTick();/* USER CODE BEGIN SysTick_IRQn 1 *//* USER CODE END SysTick_IRQn 1 */
}

HAL_IncTick()函数中断一次uwTick就+1,代表着程序到目前为止已经执行多少ms了。

__weak void HAL_IncTick(void)
{uwTick += (uint32_t)uwTickFreq;
}

5- HAL_Delay()实现原理分析

这是HAL_Delay()的函数原型:

_weak void HAL_Delay(uint32_t Delay)
{uint32_t tickstart = HAL_GetTick();/*这个就是获取前面已经运行多长时间的值uwTick,假设获取的时间为1000ms*/uint32_t wait = Delay;/*这个就是传进来的参数,假设等于500ms*//* Add a period to guaranty minimum wait 判断,防止溢出 */if (wait < HAL_MAX_DELAY){wait += (uint32_t)uwTickFreq;/*系统这里默认需要加一,这也是为什么我们的HAL_Delay()函数会多一秒的原因*/}while ((HAL_GetTick() - tickstart) < wait)/*比较知道我获取的新的时间-1000ms=501ms的时候我就可以退出循环了,就等于是在这里停下501ms*/{}
}

这样就实现了定时的功能。

6- 微妙级延时实现

HAL 库函数中有函数HAL_Delay()进行毫秒级的延时,但是在实际的开发中有时需要进行较为准确的微秒级别延。本章将采用一个通用定时器TIM6实现微秒级别的延时。
STM32L433除了通用的Systick定时器以外,另外还有6个定时器: TIM1、TIM2、TIM6、TIM7、TIM15、TIM16。TIM6、TIM7 是两个16位的自装载基本定时器,它们只能作定时使用,而TIM1、TIM2、TIM15、TIM16则是通用高级定时器,除了定时功能以外还能作PWM输出。

接下来我们将选择基本定时TIM6来实现us级的定时功能。
在这里插入图片描述
配置预分频: TIM6的输入时钟为APB1时钟80MHz,这个速率对定时器来说实在太快,这时需要对它做个预分频:
CK_CNT = TIMxCLK/(PSC+1)=80MHz/(80-1+1)=1MHz;
微秒延时配置:通过修改TIM6定时器的ARR(自动重装载寄存)的值,就可以配置定时器的超时时间:
ARR=1/1MHz = lus

在tim.c中添加代码:

void delay_us(uint16_t us)
{uint16_t differ = 60000-us;HAL_TIM_Base_Start(&htim6);__HAL_TIM_SET_COUNTER(&htim6, differ);while( differ < 60000 ){differ = __HAL_TIM_GET_COUNTER(&htim6);}HAL_TIM_Base_Stop(&htim6);
}
/* USER CODE END 1 */

在tim.h在中添加头文件:

/* USER CODE BEGIN Prototypes */
extern void delay_us(uint16_t us);
/* USER CODE END Prototypes */

最后我们来用LED灯来调试一下:

  /* USER CODE BEGIN WHILE */sysled_hearbeat();while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */int i;turn_led(RedLed, ON);for(i=0; i<10; i++){delay_us(5000);}turn_led(RedLed, OFF);for(i=0; i<10; i++){delay_us(5000);}}/* USER CODE END 3 */
}

烧录调试的话大概是1秒闪烁一次。

如有错误还请指出~

这篇关于STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203404

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、