python手记12 〖笨方法学python习题34〗

2023-10-13 04:20

本文主要是介绍python手记12 〖笨方法学python习题34〗,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如有意见或其他问题可在下方写下评论或加QQ:1693121186
欢迎一起讨论技术问题!
代码如下:

animals = ['bear', 'python', 'peacock', 'kangaroo', 'whale', 'platypus']

注:这个习题没有他、代码。只有附加练习。

  1. 位置1的动物:在位置1的是第二只动物,是python。第二只动物在位置1,是python
  2. 第三只动物:第三只动物在位置2,是peacock(孔雀),在位置2的是第三只动物,是peacock(孔雀)。
  3. 第1只动物:第一只动物在位置0,是bear(熊)。在位置0的是第1只动物,是bear(熊)。
  4. 位置3的动物:在位置3的是第四只动物,是kangaroo(袋鼠)。第四只动物在位置3,是kangaroo(袋鼠)
  5. 第5只动物:第五只动物在位置4,是whale(鲸)。在位置四的是第5只动物,是whale(鲸)。
  6. 位置3的动物:在位置3的是第四只动物,是kangaroo(袋鼠)。第四只动物在位置3,是kangaroo(袋鼠)
  7. 第6只动物:第6只动物在位置5,是platypus(鸭嘴兽),在位置5的是第6只动物,是platypus(鸭嘴兽)
  8. 位置4的动物:在位置四的是第5只动物,是whale(鲸)。第五只动物在位置4,是whale(鲸)。

注:切记自己再演练一遍,或在python上试一遍。
说个小事情:对于编程,恒心是必须的,也希望各个程序员不要抄袭他人编下的代码。这样对所有人都不好,造成了你的依赖心,就会让祖国失去一位有志向的人呐!

**以下是序数的定义,链接:点击

汉语释义
表示次序的数目。汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。此外还有些习惯表示法,如:头一回、末一次、首次、正月、大女儿、小儿子。序数后边直接连量词或名词的时候,可省去“第”,如:二等、三号、四楼、五班、六小队、1949年10月1日等。
数学定义

序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。

这个定义从形式上看来是十分简单明了的,但在ZFC公理系统中不能证明它构成一个集合。事实上,{B|BA}是一个真类。因此,原来的那个定义是不成功的,必须修正,另走别的途径。设 α是一个良序集,ξ∈α,称S(ξ)={β∈α|β<ξ}为在良序集α中由ξ所生成的初始截段。

1923、1928年,J.冯·诺伊曼把序数定义为满足下述条件的良序集α:对于一切ξ∈α,S(ξ)=ξ。例如在集合9={0,1,2,…,8}中取一个元素2,S⑵={0,1}=2,9中任何其他元素也具有这个性质,所以9是一个序数。

集A称为归纳集,如果①═∈A,②只要α∈A就有α′=α∪{α}∈A。归纳集A的存在性是由无限公理保证的。A的一切归纳子集之交N称为自然数集,它是最小的归纳集。N是良序的,并且其中任一元素n的初始截段S(n)={0,1,2,…,(n-1)}=n,所以N是一个序数,这个序数通常用ω表示。N的每一个元素n都是序数,称为有限序数。有限序数以属于每一个归纳集作为特征。其他序数称为超限序数,ω就是最小的超限序数。
1937年R,M.鲁宾逊给出了序数的另一等价定义,良序集<;α∈>;是一个序数,若〈α,∈〉是传递集,即只要x∈α且y∈x就有y∈α,这些定义没有康托尔原来定义的缺点。

这是数学定义图

序数种类

第一种是0;第二种是某一序数α的后继α′=α∪{α},称为后继序数;其他序数属于第三种,称为极限序数。对于任何良序集A,必有一个且仅有一个序数α使A与α序同构,此时α称为A的序数,用凴 =α表示。任何两个具有相同序数的良序集,必定序同构,因此序数是同构良序集的共同特征,这正是康托尔序数概念的实质。

基数的定义

根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类。任意一个集合A所属的类就称为集合A的基数,记作|A|(或cardA)。这样,当A 与B同属一个类时,A与B 就有相同的基数,即|A|=|B|。而当 A与B不同属一个类时,它们的基数也不同。

如果把单元素集的基数记作1,两个元素的集合的基数记作2,等等,则任一个有限集的基数就与通常意义下的自然数一致 。空集的基数也记作0。于是有限集的基数也就是传统概念下的“个数”。但是,对于无穷集,传统概念没有个数,而按基数概念,无穷集也有基数,例如,任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集。不但如此,还可以证明实数集R与可数集的基数不同。所以集合的基数是个数概念的推广。

基数可以比较大小。假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。如果 a≤ β,但a≠β( 即A与B不对等 ),就称A的基数小于B的基数,记作a<β,或β>a。在承认选择公理的情况下,可以证明基数的三歧性定理——任何两个集合的基数都可以比较大小,即不存在集合A和B,使得A不能与B的任何子集对等,B也不能与A的任何子集对等。

基数可以进行运算 。设|A|=a ,|B|=β,定义 a+β=|{(a,0):a ∈ A} ∪ {(b,1):b ∈ B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

这是我从网上找出的,请各位自己看一下吧。

这篇关于python手记12 〖笨方法学python习题34〗的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200730

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用