YOLOX进行目标检测(东北大学钢材表面缺陷数据集)

2023-10-13 04:10

本文主要是介绍YOLOX进行目标检测(东北大学钢材表面缺陷数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOX训练数据集(东北大学数据集)

参考博文添加链接描述

1. 版本配置

cuda:11.6     #nvidia-smi查看自己电脑支持的版本
Python:3.9
torch-1.12.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html
torchvision-0.13.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html

2.配置环境并验证

2.1 YOLOX源码下载地址

https://github.com/Megvii-BaseDetection/YOLOX

2.2 执行安装

pip install -r requirements.txt~~~~~~~~~~~~~~~~~~~~~~
#为支持Python3.9修改requirements.txt的onnx版本
onnx==1.9.0#执行安装
python setup.py install#安装apex,下载地址
https://github.com/NVIDIA/apex#下载完成后,解压后,在Shell里,进入到apex-master中执行安装命令
pip install -r requirements.txt   python setup.py install#安装pycocotools
pip install pycocotools#下载预训练模型放到根目录
https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth。#验证环境,执行
python tools/demo.py image -f exps/default/yolox_s.py -c ./yolox_s.pth
--path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

​ 测试结果
在这里插入图片描述


3.制作数据集

3.1下载数据集

按照测试集,训练集,验证集2:1:1的比例进行创建链接:https://pan.baidu.com/s/1BeLQswzExLJ1tQrlWBhUcA?pwd=x04j 
提取码:x04j

3.2转化为VOC2007数据集

新建data/VOCdevkit
将下载好的VOC2007数据集粘贴到此文件夹

4.训练自己的数据集


4.1 修改exps/example/yolox_voc/yolox_voc_s.py

  1. 本次使用的类别有6类,所以将num_classes修改为6。

修改num类别

  1. 修改文件路径,将data_dir修改为自己目录,删掉image_sets里面的2012

在这里插入图片描述

  1. 修改test路径,将data_dir修改为自己目录

在这里插入图片描述

4.2 打开yolox/data/datasets/voc_classes.py文件,修改为自己的类别名:

在这里插入图片描述

4.3 打开yolox/data/datasets/voc.py,去掉{}里的s,否则找不到文件路径

在这里插入图片描述

4.4 重新编译yolox

python setup.py install

4.5 命令行执行

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 4 --fp16  -c yolox_s.pth

4.6 采用train.py文件执行

#修改批处理大小为4parser.add_argument("-b", "--batch-size", type=int, default=4, help="batch size")#修改设备数为1
parser.add_argument("-d", "--devices", default=1, type=int, help="device for training" )#修改训练的模型声明文件parser.add_argument("-f","--exp_file",default='exps/example/yolox_voc/yolox_voc_s.py',type=str,help="plz input your experiment description file",)#上次训练的结果,继续训练和fine turning时填写check point路径parser.add_argument("-c", "--ckpt", default='yolox_s.pth', type=str, help="checkpoint file")#训练时采用混合精度
parser.add_argument("--fp16",dest="fp16",default=True,action="store_true",help="Adopting mix precision training.",)

若在训练过程中终止,继续训练

#将其修改为True
parser.add_argument("--resume", default=True, action="store_true", help="resume training")#上次训练的结果
parser.add_argument(
"-c", "--ckpt", default='YOLOX_outputs/yolox_voc_s/best_ckpt.pth', type=str, help="checkpoint file"
)#修为自己想要开始的轮数
parser.add_argument(
"-e",
"--start_epoch",
default=None,
type=int,
help="resume training start epoch",
)

5.测试

5.1 修改参数

# 在yolox/data/datasets/__init__.py中导入“VOC_CLASSES”
from.voc_classes import VOC_CLASSES#修改tools/demo.py中代码,将“COCO_CLASSES”,改为“VOC_CLASSES”
from yolox.data.datasets import COCO_CLASSES,VOC_CLASSES#将“306”行的Predictor类初始化传入的“COCO_CLASSES”改为“VOC_CLASSES”predictor = Predictor(model, exp, VOC_CLASSES, trt_file, decoder,args.device, args.fp16, args.legacy,)

5.2 命令行测试

#重新执行编译
python setup.py install#命令行测试,在.assets文件夹下新建NEU文件夹,保存测试用例
python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_s.py -c 
YOLOX_outputs/yolox_voc_s/latest_ckpt.pth --path ./assets/NEU --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

测试示例:

在这里插入图片描述

5.3 使用demo.py测试

#修改以下数据
parser.add_argument(
'-do', "--demo", default="image", help="demo type, eg. image, video and webcam"
)#修改测试路径
parser.add_argument(
"--path", default="./assets/NEU", help="path to images or video"
)#修改模型声明文件
parser.add_argument("-f","--exp_file",default="exps/example/yolox_voc/yolox_voc_s.py",type=str,help="please input your experiment description file",
)#修改训练结果路径
parser.add_argument("-c", "--ckpt", default="YOLOX_outputs/yolox_voc_s/best_ckpt.pth", 
type=str, help="ckpt for eval")#修改设备为gpu
parser.add_argument("--device",default="gpu",type=str,help="device to run our model, can either be cpu or gpu",
)#保存路径
parser.add_argument("--save_result",default='.YOLOX_outputs/yolox_voc_s/vis_res',action="store_true",help="whether to save the inference result of image/video",
)#修改nms和tsize
parser.add_argument("--nms", default=0.45, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=640, type=int, help="test img size")

6.保存测试结果

打开yolox/utils.visualize.py文件,修改vis方法

#新增result_list数组
result_list = []#在color自变量前增加以下代码
class_name = class_names[cls_id]
one_line = (str(x0), str(y0), str(x1), str(y1), class_name, str(float(score)))
str_one_line = " ".join(one_line)
result_list.append(str_one_line)#增加返回值
return img,result_list

修改demo.py方法

#修改visual函数
#当未找到时
if output is None:result_list=['NO MATCH!']return img,result_list
#增加返回值
vis_res,result_list = vis(img, bboxes, scores, cls, cls_conf, self.cls_names)
return vis_res,result_list#在image_demo方法中修改
result_image,result_list = predictor.visual(outputs[0], img_info, predictor.confthre)
print(result_list)#写入文本文档save_file_name = os.path.join(save_folder, os.path.basename(image_name))logger.info("Saving detection result in {}".format(save_file_name))txt_name = os.path.splitext(save_file_name)[0] + ".txt"print(txt_name)f = open(txt_name, "w")for line in result_list:f.write(str(line) + '\n')f.close()cv2.imwrite(save_file_name, result_image)

文本文档:
在这里插入图片描述


遇到的一些BUG

No module named 'tensorboard'
#更新pip,进行对应包的安装
python -m pip install --upgrade pip
pip install tensorboard

在这里插入图片描述

搜索data_num_workers变量,在yolox_base.py文件中将其修改为0,重新编译执行

在这里插入图片描述

这篇关于YOLOX进行目标检测(东北大学钢材表面缺陷数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200665

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建