YOLOX进行目标检测(东北大学钢材表面缺陷数据集)

2023-10-13 04:10

本文主要是介绍YOLOX进行目标检测(东北大学钢材表面缺陷数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOX训练数据集(东北大学数据集)

参考博文添加链接描述

1. 版本配置

cuda:11.6     #nvidia-smi查看自己电脑支持的版本
Python:3.9
torch-1.12.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html
torchvision-0.13.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html

2.配置环境并验证

2.1 YOLOX源码下载地址

https://github.com/Megvii-BaseDetection/YOLOX

2.2 执行安装

pip install -r requirements.txt~~~~~~~~~~~~~~~~~~~~~~
#为支持Python3.9修改requirements.txt的onnx版本
onnx==1.9.0#执行安装
python setup.py install#安装apex,下载地址
https://github.com/NVIDIA/apex#下载完成后,解压后,在Shell里,进入到apex-master中执行安装命令
pip install -r requirements.txt   python setup.py install#安装pycocotools
pip install pycocotools#下载预训练模型放到根目录
https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth。#验证环境,执行
python tools/demo.py image -f exps/default/yolox_s.py -c ./yolox_s.pth
--path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

​ 测试结果
在这里插入图片描述


3.制作数据集

3.1下载数据集

按照测试集,训练集,验证集2:1:1的比例进行创建链接:https://pan.baidu.com/s/1BeLQswzExLJ1tQrlWBhUcA?pwd=x04j 
提取码:x04j

3.2转化为VOC2007数据集

新建data/VOCdevkit
将下载好的VOC2007数据集粘贴到此文件夹

4.训练自己的数据集


4.1 修改exps/example/yolox_voc/yolox_voc_s.py

  1. 本次使用的类别有6类,所以将num_classes修改为6。

修改num类别

  1. 修改文件路径,将data_dir修改为自己目录,删掉image_sets里面的2012

在这里插入图片描述

  1. 修改test路径,将data_dir修改为自己目录

在这里插入图片描述

4.2 打开yolox/data/datasets/voc_classes.py文件,修改为自己的类别名:

在这里插入图片描述

4.3 打开yolox/data/datasets/voc.py,去掉{}里的s,否则找不到文件路径

在这里插入图片描述

4.4 重新编译yolox

python setup.py install

4.5 命令行执行

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 4 --fp16  -c yolox_s.pth

4.6 采用train.py文件执行

#修改批处理大小为4parser.add_argument("-b", "--batch-size", type=int, default=4, help="batch size")#修改设备数为1
parser.add_argument("-d", "--devices", default=1, type=int, help="device for training" )#修改训练的模型声明文件parser.add_argument("-f","--exp_file",default='exps/example/yolox_voc/yolox_voc_s.py',type=str,help="plz input your experiment description file",)#上次训练的结果,继续训练和fine turning时填写check point路径parser.add_argument("-c", "--ckpt", default='yolox_s.pth', type=str, help="checkpoint file")#训练时采用混合精度
parser.add_argument("--fp16",dest="fp16",default=True,action="store_true",help="Adopting mix precision training.",)

若在训练过程中终止,继续训练

#将其修改为True
parser.add_argument("--resume", default=True, action="store_true", help="resume training")#上次训练的结果
parser.add_argument(
"-c", "--ckpt", default='YOLOX_outputs/yolox_voc_s/best_ckpt.pth', type=str, help="checkpoint file"
)#修为自己想要开始的轮数
parser.add_argument(
"-e",
"--start_epoch",
default=None,
type=int,
help="resume training start epoch",
)

5.测试

5.1 修改参数

# 在yolox/data/datasets/__init__.py中导入“VOC_CLASSES”
from.voc_classes import VOC_CLASSES#修改tools/demo.py中代码,将“COCO_CLASSES”,改为“VOC_CLASSES”
from yolox.data.datasets import COCO_CLASSES,VOC_CLASSES#将“306”行的Predictor类初始化传入的“COCO_CLASSES”改为“VOC_CLASSES”predictor = Predictor(model, exp, VOC_CLASSES, trt_file, decoder,args.device, args.fp16, args.legacy,)

5.2 命令行测试

#重新执行编译
python setup.py install#命令行测试,在.assets文件夹下新建NEU文件夹,保存测试用例
python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_s.py -c 
YOLOX_outputs/yolox_voc_s/latest_ckpt.pth --path ./assets/NEU --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

测试示例:

在这里插入图片描述

5.3 使用demo.py测试

#修改以下数据
parser.add_argument(
'-do', "--demo", default="image", help="demo type, eg. image, video and webcam"
)#修改测试路径
parser.add_argument(
"--path", default="./assets/NEU", help="path to images or video"
)#修改模型声明文件
parser.add_argument("-f","--exp_file",default="exps/example/yolox_voc/yolox_voc_s.py",type=str,help="please input your experiment description file",
)#修改训练结果路径
parser.add_argument("-c", "--ckpt", default="YOLOX_outputs/yolox_voc_s/best_ckpt.pth", 
type=str, help="ckpt for eval")#修改设备为gpu
parser.add_argument("--device",default="gpu",type=str,help="device to run our model, can either be cpu or gpu",
)#保存路径
parser.add_argument("--save_result",default='.YOLOX_outputs/yolox_voc_s/vis_res',action="store_true",help="whether to save the inference result of image/video",
)#修改nms和tsize
parser.add_argument("--nms", default=0.45, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=640, type=int, help="test img size")

6.保存测试结果

打开yolox/utils.visualize.py文件,修改vis方法

#新增result_list数组
result_list = []#在color自变量前增加以下代码
class_name = class_names[cls_id]
one_line = (str(x0), str(y0), str(x1), str(y1), class_name, str(float(score)))
str_one_line = " ".join(one_line)
result_list.append(str_one_line)#增加返回值
return img,result_list

修改demo.py方法

#修改visual函数
#当未找到时
if output is None:result_list=['NO MATCH!']return img,result_list
#增加返回值
vis_res,result_list = vis(img, bboxes, scores, cls, cls_conf, self.cls_names)
return vis_res,result_list#在image_demo方法中修改
result_image,result_list = predictor.visual(outputs[0], img_info, predictor.confthre)
print(result_list)#写入文本文档save_file_name = os.path.join(save_folder, os.path.basename(image_name))logger.info("Saving detection result in {}".format(save_file_name))txt_name = os.path.splitext(save_file_name)[0] + ".txt"print(txt_name)f = open(txt_name, "w")for line in result_list:f.write(str(line) + '\n')f.close()cv2.imwrite(save_file_name, result_image)

文本文档:
在这里插入图片描述


遇到的一些BUG

No module named 'tensorboard'
#更新pip,进行对应包的安装
python -m pip install --upgrade pip
pip install tensorboard

在这里插入图片描述

搜索data_num_workers变量,在yolox_base.py文件中将其修改为0,重新编译执行

在这里插入图片描述

这篇关于YOLOX进行目标检测(东北大学钢材表面缺陷数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200665

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键