Predix Asset Service深度分析

2023-10-12 22:20

本文主要是介绍Predix Asset Service深度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在IIOT领域,面临着保存海量数据的挑战,具体到Asset层面,则要保存物理对象,逻辑对象,复杂的关系,并支持对象间的组合,分类,标签和高效查询。总结来说,可以归纳为如下几种需求:
  1. 灵活的建模风格:支持不同业务领域业务对象
  2. 支持自定义属性:可以是简单的字符串,也可以是对象
  3. 支持对象间关系:层次或图关系
  4. 支持对象间组合:如电机由线圈和转子组成
  5. 支持分类:对对象做宏观分类并保存公共属性
  6. 支持标签:方便用户查询
  7. 支持灵活和高性能查询:支持针对属性,针对关系,层次等查询。
  8. 操作历史:操作日志和审计
  9. 业务能力扩展:脚本

架构

Predix架构如下所示:
  • REST API layer
Client应用可以通过REST API服务获取asset数据。这些接口提供了JSON形式的接口,用户可以通过POST形式传递这些数据。为了使用这些API,应用程序发送HTTPS请求并解析响应。可以使用任何web端开发语言解析。
  • Representation layer
Representation Layer将数据由JSON转换为内部图形式表示,也负责完成相反的过程。
  • Query engine
Query engine允许开发者使用JSON AND Graph Expression(GEL)来获取Asset Data Store中保存的任意对象或对象属性的数据。
  • Audit History Service
提供API用来获取Asset Service库中REST请求的历史信息。
  • Script engine
使用户能够将定制的业务逻辑绑定到Asset Service的REST API上。
  • Cassandra graph database
Assert Service将数据保存于Apache Cassandra Nosql数据库中

数据模型

asset

Asset模型可以理解为物理设备在虚拟世界的映射,Asset不但包含设备本身,也包含该设备如何组织和关联的信息。

classification

对asset进行分类,并保存其公共信息。

custom modeling object

自定义的模型,用来进一步进行描述,如生产商等。
API CategoryDescription
Assets典型的,我们采用层次结构定义asset,由parent asset和一个或多个child asset组成。我们可以将asset与一个classification或任意数目的custom modeling object关联。Asset可以包含任意多个用户自定义属性(custom-defined attribute)。

一个asset也可独立存在于系统中,不与任何的其他建模元素关联。
Classifications

采用树状结构组织,并了一种对asset进行分组和跟踪公共属性的手段。一个classification可以指向多个asset。classification的任意层次上均可以指定attribute。

Custom modeling objects

定制模型对象(custom modeling object)是层次化的,我们可以使用它为asset提供更多的信息。例如,我们可以为asset location,manufactureer等创建单独的对象。一个location可以与多个asset关联,类似的,一个asset也可以关联多个location。

模型示例

Fleets Sample JSON

{
"uri":"/fleets/up-1",
"name":"Union Pacific Fleet 1",
"customer":"/customers/union-pacific"
},

Manufacturers Sample JSON

{ 
"uri":"/manufacturers/GE",
"name":"General Electric Transportation",
"year_founded":"1892",
"hqLatLng":{
        "lat":41.881138, 
        "lng":-87.640666}
}

Engines Sample Data

{
"uri":"/engines/v12-1",
"type":"7FDL",
"horsepower":"4400",
"stroke":"230",
"bore":"220",
"RPM":"2400",
"manufacturer":"/manufacturers/GE"
}

Locomotives Sample JSON

{
"uri":"/locomotives/1",
"type":"Diesel-electric",
"model":"ES44AC",
"serial_no":"001",
"emission_tier":"0+",
"fleet":"/fleets/up-1",
"manufacturer":"/manufacturers/GE",
"engine":"/engines/v12-1",
"installedOn":"01/12/2005",
"dateIso":"2005-12-01T13:15:31Z",
"hqLatLng":{
"lat":33.914605,
"lng":-117.253374
}
}
从上面的例子可以看出模型是如何组织的。

存储分析

Asset的存储要考虑两个部分,json-schema和json。json-schema是json的校验标准,任何对存储系统的修改都需要使用json-schema校验。更加抽象的思考,json-schema类似于面向对象的类,而json则是类的实现:对象。 只是这种实例化是由RESTAPI触发的,且合法性由json-schema保证。
 
由于工业领域需要面对海量对象,海量关系及多种结构的数据对象(blob value,,picture, log)等,传统的SQL数据库必然无法满足这些需求,且对于JSON来说,最适合应用key-value数据库类型,当然该数据库需要提供良好的性能及可扩展性。
经过近些年的发展,cassandra与hbase在不同领域内的应用出现了分化,hbase纪玉hadoop,支持mapreduce,更加适合于大数据计算的场景;而cassandra除了在范围查询性能落后与hbase之外,在易用性,可扩展性,健壮性(无管理节点),以及在大多数的性能应用场景上对hbase存在优势,因此考虑使用cassandra作为asset的存储。
具体的,使用cassandra要满足如下的要求:
  • 良好的横向扩展性
  • 良好的可维护性
  • 高性能
  • 支持历史记录存储
  • 能够扩展关系存储及查询

可扩展性

Predix提供了Javascript语言支持更多的自定义应用。
JS支持是JDK自带的功能,而Predix将此功能应用在REST API上,能够在REST API的执行前后运行JS脚本,实现功能的扩展。其中REST API既可以是资源的CRUD API,也可以是自定义API。其执行逻辑为: 开始--->(JS代码)--->REST API--->(JS代码)-->系统通知
也即JS代码可以选择在REST API执行前后执行,如果JS代码在REST API执行前,则可用于输入数据校验等,如果在REST API执行后,则可进行通知发送等应用。 为了更加灵活的使用JS代码,JS代码中可以引用已经定义的工具方法(Predix提供),也可以调用其他REST API接口。
 
JS代码执行时工业云应用必备的部分,如SCADA系统和Thingwrox均提供了JS代码执行功能。但Thingwrox的JS执行依附于Thing本身(自定义方法)及订阅,而Predix则基于对已有REST API的封装(当然也支持自定义的REST API),总的来说Thingwrox实现的功能,predix也能实现。
例如:
    1. 调用系统方法(predix和thingwrox均提供了系统方法)
    2. 调用asset的属性(均可,thingwrox可以在脚本中通过this.引用)
    3. 调用asset的方法(thingwrox可以,predix不明)
    4. 调用其他asset的属性(predix通过restapi查询)
    5. 调用其他asset的方法(可以实现,只要是REST API形式暴露)
    6. 执行结果返回(predix可以通过消息队列返回数据)
    

关键技术

JSON-SCHEMA

http://json-schema.org/,
用以描述JSON的数据结构并做验证,JSON-SCHEMA是静态JSON描述,本身不具有任何约束力,需要在实现中加以限制:如执行新增操作时必须验证SCHEMA。
CASSANDRA
CASSANDRA是一个key-value数据库,具有高性能,高可靠性,去中心化等特性,并支持GRAPH扩展。
http://www.cnblogs.com/loveis715/p/5299495.html 

GEL

如果数据只能存储而不能查询,那就没有任何意义。predix定义了GEL语言用于查询Asset数据,该查询语言是灵活的,支持分页,过滤,正则表达式及关系查询。Asset服务就是要存储所有的模型数据,因此不能针对具体需求做针对性的开发。
在Asset   Service中,专门存在查询引擎(Graph Expression Lanauge Query Engine)完成这一功能,这也是工业云平台开发中所必须的。

业界比对

这里主要与Thingwrox做比对,Thingworx更是一个物联网平台,而Predix是工业云平台,定位不同,决定了这两个平台在设计上的取舍不同。
从建模进行比较,Thingworx弱化了多租户概念,并且基于对类-对象的抽象,给出了Thing-ThingTemplate-ThingShape的模型,能够对每一物理/逻辑实体进行建模。如一个泵,或者是以datasource;而Predix更偏重与处理工业领域的物理实体映射,并不试图建立一个包含一切的建模环境,这种取舍,在工业领域是可以理解的。

优秀实践

1. 使用URI定义资源,并天然具有REST API的证删改查能力
2. 使用JSON-SCHEMA定义数据结构,来代替表,并提供灵活扩展能力(虽然对已有数据无法进行处理,需要用户自己实现)
3. 提供了查询语言,避免陷入无穷无尽的业务开发中去
4. 提供了JS支持,给用户以最大的扩展性
5. 微服务扩展灵活支持多租户

转载于:https://www.cnblogs.com/jiyuqi/p/4c0e7fcfddc098877b6c44c01fb6823a.html

这篇关于Predix Asset Service深度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198838

相关文章

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请