【运筹优化】拉格朗日松弛 次梯度算法求解整数规划问题 + Java调用Cplex实战

本文主要是介绍【运筹优化】拉格朗日松弛 次梯度算法求解整数规划问题 + Java调用Cplex实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、拉格朗日松弛
  • 二、次梯度算法
  • 三、案例实战


一、拉格朗日松弛

当遇到一些很难求解的模型,但又不需要去求解它的精确解,只需要给出一个次优解或者解的上下界,这时便可以考虑采用松弛模型的方法加以求解。

对于一个整数规划问题,拉格朗日松弛放松模型中的部分约束。这些被松弛的约束并不是被完全去掉,而是利用拉格朗日乘子在目标函数上增加相应的惩罚项,对不满足这些约束条件的解进行惩罚。

拉格朗日松弛之所以受关注,是因为在大规模的组合优化问题中,若能在原问题中减少一些造成问题“难”的约束,则可使问题求解难度大大降低,有时甚至可以得到比线性松弛更好的上下界。

在这里插入图片描述
在这里插入图片描述


二、次梯度算法

由于拉格朗日对偶问题通常是分段线性的,这会导致其在某些段上不可导,所以没法使用常规的梯度下降法处理。于是引入次梯度(Subgradient)用于解决此类目标函数并不总是处处可导的问题。

次梯度算法的优势是比传统方法能够处理的问题范围更大,不足之处就是算法收敛速度慢。

在这里插入图片描述

在这里插入图片描述


三、案例实战

在这里插入图片描述
在这里插入图片描述

松弛之后的目标函数为

m a x : z = 16 x 1 + 10 x 2 + 4 x 4 + μ [ 10 − ( 8 x 1 + 2 x 2 + x 3 + 4 x 4 ) ] max :z=16x_1+10x_2+4x_4+\mu[10-(8x_1+2x_2+x_3+4x_4)] max:z=16x1+10x2+4x4+μ[10(8x1+2x2+x3+4x4)]

化简为

m a x : z = ( 16 − 8 μ ) x 1 + ( 10 − 2 μ ) x 2 + ( − μ ) x 3 + ( 4 − 4 μ ) x 4 + 10 μ max :z=(16-8\mu)x_1+(10-2\mu)x_2+(-\mu)x_3+(4-4\mu)x_4+10\mu max:z=(168μ)x1+(102μ)x2+(μ)x3+(44μ)x4+10μ

由于每一次迭代时 μ \mu μ 是一个确定的常数,所以目标函数中的 10 μ 10\mu 10μ 可以在建模时省略

具体求解代码如下:

import ilog.concert.IloException;
import ilog.concert.IloIntVar;
import ilog.concert.IloLinearNumExpr;
import ilog.cplex.IloCplex;import java.util.Arrays;public class TestLR {// lambdastatic double lambda = 2d;// 最大迭代次数static int epochs = 100;// 上界最大未更新次数static int ubMaxNonImproveCnt = 3;// 最小步长static double minStep = 0.001;// 松弛问题模型static IloCplex relaxProblemModel;// 变量数组static IloIntVar[] intVars;// 最佳上下界static double bestLB = 0d;static double bestUB = 1e10;// 最佳拉格朗日乘数static double bestMu = 0d;// 最佳解static double[] bestX;// 运行主函数public static void run() throws IloException {//double mu = 0d;double step = 1d;int ubNonImproveCnt = 0;// 初始化松弛问题模型initRelaxModel();// 开始迭代for (int epoch = 0; epoch < epochs; epoch++) {System.out.println("----------------------------- Epoch-" + (epoch + 1) + " -----------------------------");System.out.println("mu: " + mu);System.out.println("lambda: " + lambda);// 根据mu,设置松弛问题模型目标函数setRelaxModelObjectiveBuMu(mu);if (relaxProblemModel.solve()) {// 获得当前上界(由于建模时没有考虑常数 10*mu,所以这里要加回来,得到松弛问题的真正目标值)double curUB = relaxProblemModel.getObjValue() + 10 * mu;// 更新上界if (curUB < bestUB) {bestUB = curUB;ubNonImproveCnt = 0;} else {ubNonImproveCnt++;}System.out.println("curUB: " + curUB);// 获取变量值double[] x = relaxProblemModel.getValues(intVars);// 计算次梯度double subGradient = (8 * x[0] + 2 * x[1] + x[2] + 4 * x[3]) - 10;double dist = Math.pow(subGradient, 2);// 迭迭代停止条件1if (dist <= 0.0) {System.out.println("Early stop: dist (" + dist + ") <= 0 !");break;}// 如果次梯度大于等于0,说明满足被松弛的约束,即可以作为原问题的可行解if (subGradient <= 0) {// 计算当前原问题的解值double obj = 16 * x[0] + 10 * x[1] + 4 * x[3];if (obj > bestLB) {// 更新下界bestLB = obj;bestMu = mu;bestX = x.clone();}}System.out.println("subGradient: " + subGradient);System.out.println("bestUB: " + bestUB);System.out.println("bestLB: " + bestLB);System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");// 迭代停止条件2if (bestLB >= bestUB - 1e-06) {System.out.println("Early stop: bestLB (" + bestLB + ") >= bestUB (" + bestUB + ") !");break;}// 上界未更新达到一定次数if (ubNonImproveCnt >= ubMaxNonImproveCnt) {lambda /= 2;ubNonImproveCnt = 0;}// 更新拉格朗日乘数mu = Math.max(0, mu + step * subGradient);// 更新步长step = lambda * (curUB - bestLB) / dist;// 迭代停止条件3if (step < minStep) {System.out.println("Early stop: step (" + step + ") is less than minStep (" + minStep + ") !");break;}} else {System.err.println("Lagrange relaxation problem has no solution!");}}}// 建立松弛问题模型private static void initRelaxModel() throws IloException {relaxProblemModel = new IloCplex();relaxProblemModel.setOut(null);// 声明4个整数变量intVars = relaxProblemModel.intVarArray(4, 0, 1);// 添加约束// 约束1:x1+x2<=1relaxProblemModel.addLe(relaxProblemModel.sum(intVars[0], intVars[1]), 1);// 约束2:x3+x4<=1relaxProblemModel.addLe(relaxProblemModel.sum(intVars[2], intVars[3]), 1);}// 根据mu,设置松弛问题模型的目标函数private static void setRelaxModelObjectiveBuMu(double mu) throws IloException {// 目标函数(省略了常数 10*mu)IloLinearNumExpr target = relaxProblemModel.linearNumExpr();target.addTerm(16 - 8 * mu, intVars[0]);target.addTerm(10 - 2 * mu, intVars[1]);target.addTerm(0 - mu, intVars[2]);target.addTerm(4 - 4 * mu, intVars[3]);if (relaxProblemModel.getObjective() == null) {relaxProblemModel.addMaximize(target);} else {relaxProblemModel.getObjective().setExpr(target);}}public static void main(String[] args) throws IloException {long s = System.currentTimeMillis();run();System.out.println("----------------------------- Solution -----------------------------");System.out.println("bestMu: " + bestMu);System.out.println("bestUB: " + bestUB);System.out.println("bestLB: " + bestLB);System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");System.out.println("bestX: " + Arrays.toString(bestX));System.out.println("Solve Time: " + (System.currentTimeMillis() - s) + " ms");}}

程序输出:

----------------------------- Epoch-1 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 0.0
gap: 100.00 %
----------------------------- Epoch-2 -----------------------------
mu: 2.0
lambda: 2.0
curUB: 26.0
subGradient: -8.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-3 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-4 -----------------------------
mu: 1.0
lambda: 2.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-5 -----------------------------
mu: 11.0
lambda: 2.0
curUB: 110.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-6 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-7 -----------------------------
mu: 4.0
lambda: 2.0
curUB: 42.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-8 -----------------------------
mu: 0.0
lambda: 1.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-9 -----------------------------
mu: 1.0
lambda: 1.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-10 -----------------------------
mu: 6.0
lambda: 1.0
curUB: 60.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-11 -----------------------------
mu: 0.0
lambda: 0.5
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-12 -----------------------------
mu: 0.5
lambda: 0.5
curUB: 19.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-13 -----------------------------
mu: 3.0
lambda: 0.5
curUB: 34.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-14 -----------------------------
mu: 0.0
lambda: 0.25
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-15 -----------------------------
mu: 0.1875
lambda: 0.25
curUB: 19.625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-16 -----------------------------
mu: 1.4375
lambda: 0.25
curUB: 21.5
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-17 -----------------------------
mu: 0.0
lambda: 0.125
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-18 -----------------------------
mu: 0.044921875
lambda: 0.125
curUB: 19.91015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-19 -----------------------------
mu: 0.669921875
lambda: 0.125
curUB: 18.66015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-20 -----------------------------
mu: 1.289306640625
lambda: 0.0625
curUB: 20.314453125
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-21 -----------------------------
mu: 0.206787109375
lambda: 0.0625
curUB: 19.58642578125
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-22 -----------------------------
mu: 0.22693252563476562
lambda: 0.0625
curUB: 19.54613494873047
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-23 -----------------------------
mu: 0.5265083312988281
lambda: 0.03125
curUB: 18.946983337402344
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-24 -----------------------------
mu: 0.6756666898727417
lambda: 0.03125
curUB: 18.648666620254517
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-25 -----------------------------
mu: 0.8154633045196533
lambda: 0.03125
curUB: 18.369073390960693
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-26 -----------------------------
mu: 0.9505987204611301
lambda: 0.015625
curUB: 18.09880255907774
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-27 -----------------------------
mu: 1.0159821063280106
lambda: 0.015625
curUB: 18.127856850624084
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-28 -----------------------------
mu: 0.7628945263568312
lambda: 0.015625
curUB: 18.474210947286338
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-29 -----------------------------
mu: 0.766863206459675
lambda: 0.0078125
curUB: 18.46627358708065
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-30 -----------------------------
mu: 0.7999655929725122
lambda: 0.0078125
curUB: 18.400068814054976
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-31 -----------------------------
mu: 0.833036974172046
lambda: 0.0078125
curUB: 18.333926051655908
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-32 -----------------------------
mu: 0.8658497429769483
lambda: 0.00390625
curUB: 18.268300514046103
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-33 -----------------------------
mu: 0.8821269422965887
lambda: 0.00390625
curUB: 18.235746115406823
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-34 -----------------------------
mu: 0.8982759667380851
lambda: 0.00390625
curUB: 18.20344806652383
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-35 -----------------------------
mu: 0.914361408369739
lambda: 0.001953125
curUB: 18.17127718326052
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-36 -----------------------------
mu: 0.9223725881222037
lambda: 0.001953125
curUB: 18.155254823755595
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-37 -----------------------------
mu: 0.9303523509964815
lambda: 0.001953125
curUB: 18.13929529800704
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-38 -----------------------------
mu: 0.9383164670353054
lambda: 9.765625E-4
curUB: 18.123367065929386
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-39 -----------------------------
mu: 0.9422907323175354
lambda: 9.765625E-4
curUB: 18.11541853536493
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-40 -----------------------------
mu: 0.9462572201426962
lambda: 9.765625E-4
curUB: 18.107485559714608
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
Early stop: step (9.896832958635996E-4) is less than minStep (0.001) !
----------------------------- Solution -----------------------------
bestMu: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
bestX: [0.0, 1.0, 0.0, 0.0]
Solve Time: 152 ms

分析:
从最终结果可以看到, bestLB 为10,也就是通过拉格朗日松弛&次梯度算法得到的最优可行解的目标值为10,这明显不是最优解(最优解应该是16, x 1 = 1 x_1=1 x1=1,其余变量为0)
这是因为我们松弛了一个约束,所以通过拉格朗日松弛&次梯度算法得到的解不一定是最优解。但是当遇到一些很难求解的模型,但又不需要去求解它的精确解时,拉格朗日松弛&次梯度算法就可以派上用场了!


参考链接:

  • 【凸优化笔记5】-次梯度方法(Subgradient method)
  • 运筹学教学|快醒醒,你的熟人拉格朗日又来了!!
  • 拉格朗日松弛求解整数规划浅析(附Python代码实例)

这篇关于【运筹优化】拉格朗日松弛 次梯度算法求解整数规划问题 + Java调用Cplex实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198826

相关文章

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关