2D人体姿态识别-对Human3.6M数据集预处理(1):用python读取并处理cdf文件,cdflib包中各函数介绍,Human3.6M数据集2d关节点格式解读

本文主要是介绍2D人体姿态识别-对Human3.6M数据集预处理(1):用python读取并处理cdf文件,cdflib包中各函数介绍,Human3.6M数据集2d关节点格式解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、Human3.6M数据集结构介绍
  • 二、处理cdf.文件
    • 1.法一:使用nasa官方提供的CDF library
    • 2.法二:使用CDF library的纯python替代品:cdflib
      • 1)安装cdflib
      • 2)cdflib中各函数介绍
        • ①读取一个cdf.文件 cdflib.CDF('xxx.cdf')
        • ②查看此cdf.文件信息: cdf_info()
        • ③提取此cdf文件中的变量:varget ()
      • 3)*cdflib实例:处理H3.6M中存储2d keypoints的cdf文件
      • 4)解读Human3.6M数据集中视频和2d关节点数据


前言

一、Human3.6M数据集结构介绍

Human3.6M数据集有360万个3D人体姿势和相应的图像,共有11个实验者(Subject)(6男5女,论文一般选取1,5,6,7,8作为train,9,11作为test),和17个动作场景(Scenario),诸如讨论、吃饭、运动、问候等动作。该数据由4个数字摄像机,1个时间传感器,10个运动摄像机捕获。

我需要训练的网络输入应该为两个角度的人物照片(从视频中提取关键帧),2d关节的关键点作为监督(从cdf文件中提取)。从官网的以下分类中下载:
官方分类以及该下载的数据
大批量预处理Human3.6M数据集的方法可以参考:github: h36m-fetch
这次的小批量预处理先以S1(人物)的sitting1.55011271(人物右前方,观察者的左侧,下面用左来命名)和sitting.60457274(人物左前方,观察者的右侧,下面用右来命名)为例。
项目文件夹:所需用到的数据

二、处理cdf.文件

1.法一:使用nasa官方提供的CDF library

参考:使用python读取cdf数据

  • 第一步:下载CDF Library:nasa cdf 官网
  • 第二步:编译make OS=linux ENV=gnu CURSES=yes FORTRAN=no UCOPTIONS=-O2 SHARED=yes all
  • 第三步:安装sudo make INSTALLDIR=/usr/local/cdf install
  • 第四步:安装spacepy pip install spacepy
  • 第五步:使用代码如下实例
import os
from spacepy import pycdf
os.environ["CDF_LIB"] = "/usr/local/cdf/lib"
anno_Greeting=pycdf.CDF('/home/maddaff/Documents/TestSpace/Greeting.54138969.cdf')
data=anno_Greeting.copy()
anno_Greeting.close()
print data.keys()

NASA官网提供的可下载文件太多了,我不知道下载哪个才是正确的CDF Lib,故而放弃了这种方法。

2.法二:使用CDF library的纯python替代品:cdflib

cdflib模块详情(github地址)

1)安装cdflib

在cmd中执行pip install cdflib
或者直接在Pycharm中安装此package
在这里插入图片描述

2)cdflib中各函数介绍

①读取一个cdf.文件 cdflib.CDF(‘xxx.cdf’)
 import cdflib
cdf_file = cdflib.CDF('/path/to/cdf_file.cdf')
②查看此cdf.文件信息: cdf_info()

返回一个显示基本CDF信息的字典。这些信息包括:
cdfCDF的名称
version CDF的版本
encoding CDF的字节顺序
Majority 行/列多数
zVariables 一个zVariables名称的列表。
rVariables 一个rVariables名称的列表。
Attributes 一个包含属性名及其作用域的字典对象列表,例如 - {attribute_name : scope}。
Checksum 验算符
Num_rdim 维度数,仅适用于 rVariables。
rDim_sizes 维度大小,仅适用于 rVariables。
Compressed CDF压缩到此文件级
LeapSecondUpdated 最后更新的闰年表(如适用)

③提取此cdf文件中的变量:varget ()
varget (variable = None, [epoch=None], [[starttime=None, endtime=None] | [startrec=0, endrec = None]], [,expand=True])
  • 默认情况下,将返回完整的变量数据。要仅获取记录可变变量的一部分数据,可以指定时间或记录(从0开始)范围。
  • epoch可用于指定该变量所依赖的时间变量,并将在时间范围内进行搜索。对于符合ISTP的CDF,时间变量将来自此变量的属性“ DEPEND_0”。该功能将自动搜索它,因此无需指定“epoch”。
  • 如果未指定开始时间或结束时间(starttimeend time),则假定特定时期数据类型可能的最小值或最大值。
  • 如果未指定开始或结束记录( startrecendrec),则范围从0开始,结束于最后写入的数据。

开始(和结束)时间应在列表中显示为:

  • [year month day hour minute second millisec] for CDF_EPOCH
  • [year month day hour minute second millisec microsec nanosec picosec] for
    CDF_EPOCH16
  • [year month day hour minute second millisec microsec nanosec] for CDF_TIME_TT2000

如果没有提供足够的时间分量,则只有最后一项可以具有子时间分量的浮动部分。

注意:CDF的CDF_EPOCH16数据类型为每个数据值使用2个8字节双精度数。在Python中,每个值都表示为complex或numpy.complex128。

返回变量数据。可以输入变量名或变量号。默认情况下,它会根据数据类型返回带有变量data及其规范的numpy.ndarray or或list()class对象。

如果为expand=True,则返回具有以下定义的键的字典用于输出

Rec_Ndim 每个变量记录的维数
Rec_Shape 变量的形状
Num_Records 记录总数
Records_Returned 检索到的记录数
Data_Type CDF数据类型
Data 检索变量数据
Real_Records 列表中稀疏记录变量的真实数据记录号

例如:

x = cdf_file.varget("NameOfVariable", startrec = 0, endrec = 150)

此命令将返回变量Variable10中的所有数据,从记录时刻0到150

3)*cdflib实例:处理H3.6M中存储2d keypoints的cdf文件

import cdflib#load a cdf file
cdf= cdflib.CDF('Sitting 1.55011271.cdf')#View the Information about the cdf file
info = cdf.cdf_info()#Get the variables in the cdf file
x = cdf.varget("Pose")

4)解读Human3.6M数据集中视频和2d关节点数据

上述代码生成的变量如下图所示:
在这里插入图片描述
我们重点关注x(1,3304,64),也就是从cdf文件中提取出来的变量,表示的是视频每一帧中各关节点的2d坐标标注。

  • 行-帧数:cdf文件的每一行的定义是一帧中的标注,因此一个标注文件对应的视频有多少帧,这个文件就有多少行。这个sitting1.55011271.mp4共有3304帧。
    在这里插入图片描述
  • 列-32个关键点的2D坐标:这3304行的每一行里面有64个数据,每2个数据为一组,共32组,每组表示的便是这个关键点的2D坐标。

论文《Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments》提到,数据集中共有32个关节点,但并未给出具体的标注顺序和对应关节。

在h3.6m中,会有一些看似冗余标注点,如图中的11和0是重合的,其实是因为h36m的节点来说,如果它们的父节点相同,那么它们共享同一个旋转向量,因此所有父节点相同的节点相对父节点旋转角度都是一样的,这样会造成一些问题,比如节点0有3子节点,但是胯部的方向和脊椎的旋转方向是不一样的,因此就需要一个多设置一个11节点作为12的父节点来改变12节点的旋转方向。同理,20与19重合用来改变21的方向,28与27重合用来改变29的方向,16和24都与13重合,16用来改变17的方向,24用来改变25的方向,剩下的23和31则为无意义节点。
————————————————
版权声明:本文为CSDN博主「alickr」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/alickr/article/details/107837403

由此可知,H36M数据集中标注32个关键点(见右图),一部分是为了满足表达旋转向量的需要的。我们只研究关节点的2d位置时,不需要考虑全部的32个关键点,只需要提取出有效表示对应关节的关键点即可(见左表)。

在这里插入图片描述
右图是参考博文CSDN:human3.6m数据集格式解析中给出的全部关键点(keypoints)的标注顺序,左表是博文COCO和Human3.6m两个数据集的人体骨骼标注顺序 中给出的关键点和主要关节对应关系(注意这篇博文里coco的标注是错的!正确的关系见Coco key point json file parsing):

这篇关于2D人体姿态识别-对Human3.6M数据集预处理(1):用python读取并处理cdf文件,cdflib包中各函数介绍,Human3.6M数据集2d关节点格式解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/195444

相关文章

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装