代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)

本文主要是介绍代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1143.最长公共子序列
    • 思路
    • 代码
  • 1035.不相交的线
    • 思路
    • 代码
  • 53. 最大子序和(dp)
    • 思路
    • 代码

1143.最长公共子序列

Leetcode

在这里插入图片描述

思路

本题和718. 最长重复子数组 区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

不是连续的话,具体写代码的区别体现在递推公式上,

if text1[i - 1] != text2[j - 1]: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

从下图可以看出来可以有三个方向推导出dp[i][j]
在这里插入图片描述
举例推导dp数组

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:

在这里插入图片描述

代码

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:dp = [[0] * (len(text1) + 1) for _ in range(len(text2) + 1)]for i in range(1, len(text2) + 1):for j in range(1, len(text1) + 1):if text2[i - 1] == text1[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[-1][-1]
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

1035.不相交的线

Leetcode
在这里插入图片描述

思路

此题和上题一模一样。

代码

class Solution:def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:dp = [[0] * (len(nums1) + 1) for _ in range(len(nums2) + 1)]for i in range(1, len(nums2) + 1):for j in range(1, len(nums1) + 1):if nums2[i - 1] == nums1[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[-1][-1]

53. 最大子序和(dp)

Leetcode

在这里插入图片描述

思路

  1. dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
  2. 递推公式:
    dp[i]只有两个方向可以推出来:
    • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
    • nums[i],即:从头开始计算当前连续子序列和
      我一开始写成了dp[i] = max(dp[i], dp[i - 1] + nums[i]),那这就不对了,因为这样就会受到dp[i]初始化的影响。
  3. 初始化:dp[0] = nums[0],剩下的随意
  4. 遍历顺序从前往后
  5. 举例
    以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
    在这里插入图片描述

代码

class Solution:def maxSubArray(self, nums: List[int]) -> int:dp = [nums[0]] * len(nums)res = nums[0]for i in range(1, len(nums)):dp[i] = max(nums[i], dp[i - 1] + nums[i])res = max(res, dp[i])return res
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

这篇关于代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1932

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,