深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析

本文主要是介绍深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析

  • 1、BatchNorm
  • 2、LayerNorm
  • 3、GroupNorm
    • 用法:

BatchNorm、LayerNorm 和 GroupNorm 都是深度学习中常用的归一化方式。
它们通过将输入归一化到均值为 0 和方差为 1 的分布中,来防止梯度消失和爆炸,并提高模型的泛化能力

1、BatchNorm

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import numpy as np
import torch.nn as nn
import torchdef bn_process(feature, mean, var):feature_shape = feature.shapefor i in range(feature_shape[1]):# [batch, channel, height, width]feature_t = feature[:, i, :, :] # 得到每一个channel的height和widthmean_t = feature_t.mean()# 总体标准差std_t1 = feature_t.std()# 样本标准差std_t2 = feature_t.std(ddof=1)# bn process# 这里记得加上eps和pytorch保持一致feature[:, i, :, :] = (feature[:, i, :, :] - mean_t) / np.sqrt(std_t1 ** 2 + 1e-5)# update calculating mean and varmean[i] = mean[i] * 0.9 + mean_t * 0.1var[i] = var[i] * 0.9 + (std_t2 ** 2) * 0.1print(feature)# 随机生成一个batch为2,channel为2,height=width=2的特征向量
# [batch, channel, height, width]
feature1 = torch.randn(2, 2, 2, 2)
# 初始化统计均值和方差
calculate_mean = [0.0, 0.0]
calculate_var = [1.0, 1.0]
# print(feature1.numpy())# 注意要使用copy()深拷贝
bn_process(feature1.numpy().copy(), calculate_mean, calculate_var)bn = nn.BatchNorm2d(2, eps=1e-5)
output = bn(feature1)
print(output)

显示结果如下:
在这里插入图片描述

在这里插入图片描述

代码:

import torch
import torch.nn as nn
import numpy as npfeatuer_array=(np.random.rand(2,4,2,2)).astype(np.float32)
print(featuer_array.dtype)featuer_tensor=torch.tensor(featuer_array,dtype=torch.float32)
bn_out=nn.BatchNorm2d( num_features=featuer_array.shape[1],eps=1e-5)(featuer_tensor)
print(bn_out)print("-----")for i in range(featuer_array.shape[1]):channel=featuer_array[:,i,:,:]mean=channel.mean()var=channel.var()print(f"mean---{mean},var---{var}")featuer_array[:,i,:,:]=(channel-mean) / np.sqrt(var + 1e-5)
print(featuer_array)

打印结果:
在这里插入图片描述

2、LayerNorm

Transformer block 中会使用到 LayerNorm , 一般输入尺寸形为 :(batch_size, token_num, dim),会在最后一个维度做 归一化,其中dim维度为token的特征向量: nn.LayerNorm(dim)

在这里插入图片描述

import torch
import torch.nn as nn
import numpy as npfeature_array=(np.random.rand(2,3,2,2).astype(np.float32))# 需要将其转化为[batch,token_num,dim]的形式
feature_array=feature_array.reshape((2,3,-1)).transpose(0,2,1)
print(feature_array.shape)   # (2, 4, 3)feature_tensor=torch.tensor(feature_array.copy(),dtype=torch.float32)layer_norm=nn.LayerNorm(normalized_shape=feature_array.shape[2])(feature_tensor)
print(layer_norm)print("\n","*"*50,"\n")
batch,token_num,dim=feature_array.shapefeature_array=feature_array.reshape((-1,dim))
for i in range(batch * token_num):mean=feature_array[i,:].mean()var=feature_array[i,:].var()print(f"mean----{mean},var----{var}")feature_array[i,:]=(feature_array[i,:]-mean) / np.sqrt(var + 1e-5)
print(feature_array.reshape(batch,token_num,dim))

打印效果如下所示:
在这里插入图片描述

3、GroupNorm

在这里插入图片描述

用法:

torch.nn.GroupNorm:将channel切分成许多组进行归一化
torch.nn.GroupNorm(num_groups,num_channels)
num_groups:组数
num_channels:通道数量
在这里插入图片描述
代码:

import torch
import torch.nn as nn
import numpy as npfeature_array=(np.random.rand(2,4,2,2)).astype(np.float32)
print(feature_array.dtype)feature_tensor=torch.tensor(feature_array.copy(),dtype=torch.float32)
group_result=nn.GroupNorm(num_groups=2,num_channels=feature_array.shape[1])(feature_tensor)
print(group_result)feature_array = feature_array.reshape((2, 2, 2, 2, 2)).reshape((4, 2, 2, 2))for i in range(feature_array.shape[0]):channel = feature_array[i, :, :, :]mean = feature_array[i, :, :, :].mean()var = feature_array[i, :, :, :].var()print(mean)print(var)feature_array[i, :, :, :] = (feature_array[i, :, :, :] - mean) / np.sqrt(var + 1e-5)
feature_array = feature_array.reshape((2, 2, 2, 2, 2)).reshape((2, 4, 2, 2))
print(feature_array)

打印结果:

在这里插入图片描述

这篇关于深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/193176

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con