Anaconda中 conda install / Solving environment 速度慢问题其中一些可能的方法

本文主要是介绍Anaconda中 conda install / Solving environment 速度慢问题其中一些可能的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Anaconda中 conda install / Solving environment 速度慢问题其中一些可能的方法

问题

今天在用实验室的Linux主机创建新的conda环境的时候遇到了一个问题,在使用Anaconda中的conda install来安装包的时候会卡在Solving environment这一步,有时候还会多次失败重试
在这里插入图片描述

原因

Conda中包含的软件越来越多,而且软件的不同版本都保留了下来,软件的索引文件越来越大,安装一个新软件时搜索满足环境中所有软件依赖的软件的搜索空间也会越来越大,导致solving environment越来越慢,确定待安装包的依赖包之间的兼容和已安装软件之间的兼容,获得需要下载的包和对应版本这个过程非常耗时

解决方法

方法一:用pip install而不是conda install

先别急,这是我最近想明白的一点,也是我目前试过的唯一有用的一种方法,虽然很蠢但是有用(本人小白且愚钝,大佬们见笑):

不用conda install,直接用pip install或者pip3 install

原理

与其说原理不如说我脑袋宕机的原因,我自己的电脑上Windows系统拥有本地的原装Python环境Anaconda的base中的环境,所以直接调用python的话可能会调用到本地没有配置好的环境,相应地,pip指令也会写入对应的本地环境
但是可以通过上移conda的环境变量或者删除本地环境实现

但是当你进入你设置好的Anaconda环境时,无论是conda install还是pip install都会在对应的conda虚拟环境里安装,因此只需要考虑其中一种安装方式即可

很多地方说conda的速度比pip快之类的,所以都推荐用conda,但是在设置了镜像之后,其实原生的pip方法速度也很快
先放几个国内的镜像源:

#中科大源、清华源、豆瓣源
https://pypi.mirrors.ustc.edu.cn/simple/
https://pypi.tuna.tsinghua.edu.cn/simple
https//pypi.doubanio.com/simple/ 

如果看到这里能帮到你,恭喜你!如果不了解具体操作请继续往下看!

方法二:用mamba安装

mamba是用于管理环境的 CLI 工具,相比于conda 对包和环境的管理,安装过程中对包和依赖的检查过程是最耗时的,mamba可以实现并行运算,速度比较快

安装mamba

 conda install mamba -n base -c conda-forge

通过mamba安装的方式和conda一样

mamba install package

但是安装mamba的过程也需要conda install然后又会卡在Solving environment那里,逻辑闭环了属于是

方法三:更换镜像源

这也是很多博客里面提到的方法之一,我认为是治标不治本甚至也不治标,因为速度瓶颈主要在检查包和依赖,跟网速关系不大,关于设置和更换镜像源的方法,我在后面部分介绍了,有需要的可以往后看!

方法四:更新conda

conda update -n env_name conda

这个方法没有验证过,但是在更新的时候可能会遇到更新失败的情况,有些时候是因为更新的是miniconda,可以尝试把conda改成anaconda

conda update -n env_name anaconda

conda常见虚拟环境操作

创建虚拟环境

conda  create  --name  env_name python=version 

其中-n后面的是你自己的虚拟环境的名称,version部分是你指定的Python版本,注意,Python版本在设定之后基本就不能变了,不然很多相关的依赖版本也会变
但是自己新建之后的环境中是不会有Anaconda原生的base环境中那么多丰富的包的(不知道是不是我的问题),所以我选择直接克隆base环境,这样的好处很多必要的包不用重新下载,坏处是Python版本就定死了

克隆虚拟环境

conda  create  -n  new_env_name  --clone  old_env_name

其中new_env_name是你新建的环境的名称,old_env_name是你要克隆的环境,如果是base的话就是:

conda  create  -n  new_env_name  --clone  base

进入虚拟环境

conda activate env_name

退出虚拟环境

conda deactivate

删除虚拟环境

conda remove  --name  env_name  --all

查看虚拟环境

conda env list

或者

conda info -e

添加镜像源

使用pip添加镜像源路径

在使用pip的时候可以通过直接在路径前面加-i实现,也即在命令后面添加:

#中科大源、清华源、豆瓣源
-i https://pypi.mirrors.ustc.edu.cn/simple/
-i https://pypi.tuna.tsinghua.edu.cn/simple
-i https//pypi.doubanio.com/simple/ 

使用conda添加镜像源配置

使用conda的时候一般要先配置镜像源而不是直接在命令后面添加指令

查看镜像源的指令

conda config --show channels

也可以通过以下命令:

conda config --show-sources

在这里插入图片描述

图中的- defaults就是默认源,即使不设置也会有一些国内镜像源,比如我在安装PyTorch的时候就是从阿里云的镜像源下载的:

Collecting nvidia-cudnn-cu11==8.5.0.96Downloading https://mirrors.aliyun.com/pypi/packages/dc/30/66d4347d6e864334da5bb1c7571305e501dcb11b9155971421bb7bb5315f/nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)

添加镜像源的指令

conda config --add channels mirror_url

其中的mirror_url是镜像源的网址

# 清华源
conda config --add channels https://pypi.tuna.tsinghua.edu.cn/simple# 阿里源
conda config --add channels https://mirrors.aliyun.com/pypi/simple/#豆瓣源
conda config --add channels https://pypi.doubanio.com/simple/ #中科大源
conda config --add channels https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

删除镜像源的指令

conda config --remove channels https://pypi.tuna.tsinghua.edu.cn/simple

有时候会遇到镜像源失效的情况,这时候可以通过以上指令删除对应镜像源

实例

安装PyTorch和TensorFlow的过程我都没来得及记录,以下是后面更改PyTorch版本的情况
在安装PyTorch的时候安装了11.6版本,但是和显卡驱动不适配,可以通过以下命令查看CUDA版本:

nvidia-smi

在这里插入图片描述
可以在右上角看到CUDA版本是10.1
由于PyTorch版本是和CUDA版本严格绑定的,所以如果用高版本的PyTorch强行调用就会显示CUDA和显卡驱动版本太老。由于更改显卡驱动和CUDA版本很麻烦,所以我退而求次,试图安装10.1版本的PyTorch
官网目前的版本只有11.6和11.7,但是可以通过下面的链接找到之前的版本:
PyTorch官网老版本链接
包含10.1版本的最高PyTorch版本只到1.7.1:

# CUDA 9.2
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=9.2 -c pytorch# CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch# CUDA 10.2
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch# CPU Only
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cpuonly -c pytorch

但是以上命令除了依旧会遇到conda install的问题之外,还会遇到有些镜像源找不到对应版本的情况,因此采用下面的方式:

# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

我安装的是1.6.0版本PyTorch的10.1CUDA,但是又遇到了torchaudio版本不匹配的问题:
在这里插入图片描述

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchaudio 0.13.1 requires torch==1.13.1, but you have torch 1.6.0+cu101 which is incompatible.

无所谓,我会出手,更新torchaudio到指定版本就可以,通过查阅 torchaudio官方文档
可以知道1.6.0版本的PyTorch对应的是0.6.0版本的torchaudio,python版本是3.6~3.8
torch和torchaudio的版本对应

成功安装0.6.0版本torchaudio之后
测试一下:
测试

全部可以正常运行!

这篇关于Anaconda中 conda install / Solving environment 速度慢问题其中一些可能的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192440

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶