视频分类哪家强?高效NeXtVLAD在飞桨!

2023-10-11 22:40

本文主要是介绍视频分类哪家强?高效NeXtVLAD在飞桨!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读:昨天的TSM文章发布之后受到广大读者的好评。读者在后台留言想要了解更多视频分类相关的技术,看来视频分类问题真的很热门,使用深度学习的方法大规模进行视频分类逐渐成为了趋势。除了TSM之外,目前深度学习领域还有一系列优秀的视频分类模型,我们会慢慢为大家介绍。今天,我们将为大家介绍由飞桨官方复现并开源的另一个重要模型:NeXtVLAD。

 

1.  视频分类概述

视频分类是指给定一个视频片段,对其中包含的内容进行分类。视频分类任务中,又以视频动作分类最为热门(如做蛋糕,打篮球,亲吻,喝酒,哭泣)等(详见下节数据集介绍),毕竟动作本身就包含“动”态的因素,不是“静“态的图像所能描述的,因此也是最体现视频分类功底的。

 

2.  常见数据集

近年来,视频理解相关的领域涌现了大量的新模型、新方法,与之相伴的,也有多个新的大规模的视频理解数据集。不同的数据集的概要情况如下:

其中,Youtube-8M为谷歌开源的视频数据集,视频来自youtube,共计8百万个视频,总时长50万小时,V1版有4800个视觉实体标签,V2版有3862个视觉实体标签,是视频理解领域规模最大的数据集。为了保证标签视频数据库的稳定性和质量,谷歌只采用浏览量超过1000的公共视频资源。谷歌对视频进行了预处理,并提取了帧级别的特征,提取的特征被压缩到可以放到一个硬盘中(大小约为1.5T)。

Kinetics 数据集包括Kinetics-400和Kinetics-600以及今年刚发布的Kinetics-700。Kinetics是一个大规模、高质量的 Youtube视频网址数据集,其中包含各种以人为主题的行为动作。每个视频剪辑持续大约10秒中,并标有一个人类动作,所有剪辑都经过多轮人工,每个剪辑均来自一个独特的 YouTube视频。这些动作涵盖了广泛的课程,包括人物体交互,如演奏乐器,以及人与人之间的互动,如握手和拥抱。

Kinetics-400发布于2017年,该数据集由306,245个视频剪辑组成,涵盖400个人类动作。Kinetics-600发布于2018年,该数据集由495,547个视频剪辑组成, 涵盖600个人类动作类。Kinetics-700发布于2019年,该数据集由650,317个视频剪辑组成,涵盖700个人类动作。

3.  NeXtVLAD简介

在深度学习之前,研究者们已经提出了许多传统的局部特征融合的算法,例如BoW,FV,VLAD等,旨在建模更紧凑的视觉特征表示,从而提升大规模视觉识别任务的性能。2016年的CVPR会议上研究者们又提出了一个可微分的网络模块NetVLAD,将传统的VLAD描述子与神经网络相结合,成功应用于场景识别的任务中。但是NetVLAD的缺陷是编码得到的特征维度过高,导致神经网络中含有上亿的参数,计算量巨大难以优化,容易产生过拟合。

为了解决NetVLAD中参数爆炸的问题,同时受ResNeXt的工作所启发,NeXtVLAD应运而生。NeXtVLAD首先对输入的特征做升维操作,然后将该特征划分成多个群组分别进行建模,并引入Group Convolution层减少模型参数,提高计算性能。此外该模型中还引入视觉Attention机制对不同的群组赋予不同权重,建模视频中不同帧的分类贡献度。最后为了捕获特征之间的依赖关系,在分类层之前加入Context Gating模块来重塑特征和输出标签,同时引入SE(Squeeze-and-Excitation)操作进一步减小模型参数。通过图像和音频特征的两路融合,NeXtVLAD取得了0.87的GAP指标,是该赛事中效果最好的单模型结构。

NeXtVLAD模型提供了一种将帧级别的视频特征转化并压缩成特征向量,以适用于任意数目帧输入的视频分类方法。其基本出发点是在NetVLAD模型的基础上,将高维度的特征先进行分组,再引入attention机制聚合提取时间维度的信息,这样既可以获得较高的准确率,又可以节省参数量。模型的主要结构如下:

 图1. NeXtVLAD模型结构图

关于模型结构的更多细节,请参阅论文:NeXtVLAD: AnEfficient Neural Network to Aggregate Frame-level Features for Large-scaleVideo Classification,https://arxiv.org/abs/1811.05014

 

4.  飞桨NeXtVLAD快速上手

 

飞桨官方实现了论文中的NeXtVLAD单模型结构,并将其开源,赶快来试试吧。

 

  • 数据准备

下载2nd-Youtube-8M数据集。

 

  • 模型训练

(1)随机初始化开始训练

在PaddleVideo目录下运行如下脚本:

bash ./scripts/train/train_nextvlad.sh

(2)使用预训练模型做finetune

请先将提供的预训练模型(训练好的网络参数)下载到本地,预训练模型地址:

https://paddlemodels.bj.bcebos.com/video_classification/nextvlad_youtube8m.tar.gz并在上述脚本文件中添加“--resume”为所保存的预模型存放路径。使用4卡Nvidia Tesla P40,总的batch size数是160。

(3)训练策略

使用Adam优化器,初始learning_rate=0.0002,每2,000,000个样本做一次学习率衰减,learning_rate_decay =0.8,正则化使用l2_weight_decay = 1e-5

 

  • 模型评估

用户可以下载预训练的模型参数,或者使用自己训练好的模型参数。请在./scripts/test/test_nextvald.sh 文件中修改“--weights”参数为保存模型参数的目录,并运行如下命令:

bash ./scripts/test/test_nextvlad.sh

 由于YouTube-8M提供的数据中test数据集是没有ground truth标签的,所以这里使用validation数据集来做测试。

 

模型参数列表如下:

参数

取值

cluster_size

128

hidden_size

2048

groups

8

expansion

2

drop_rate

0.5

gating_reduction

8

 

计算指标列表如下:

精度指标

模型精度

Hit@1

0.8960

PERR

0.8132

GAP

0.8709

 

4. 模型推断

用户可以下载预训练的模型参数,也可以使用自己训练好的模型参数。请在./scripts/infer/infer_nextvald.sh 文件中修改“—weights”参数为保存模型参数的目录,运行如下脚本:

bash ./scripts/infer/infer_nextvald.sh

 

推断结果将会保存在NEXTVLAD_infer_result文件中,使用pickle格式存储。

 

快快自己动手尝试下吧!

 

想与更多的深度学习开发者交流,请加入飞桨官方QQ群:432676488

如果您想详细了解更多飞桨PaddlePaddle的相关内容,请参阅以下文档。

  • 官网地址:

    https://www.paddlepaddle.org.cn

  • 项目地址:

    https://github.com/PaddlePaddle/models/tree/v1.5.1/PaddleCV/PaddleVideo

最后给大家推荐一个GPU福利 - Tesla V100免费算力!配合PaddleHub能让模型原地起飞~ 扫描下方二维码申请~


这篇关于视频分类哪家强?高效NeXtVLAD在飞桨!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/191327

相关文章

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、