NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现

2023-10-11 18:10

本文主要是介绍NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论主要来自论文A Neural Probabilistic Language Model,可以百度到的

这篇博文对理论方面的介绍挺不错的    链接地址

一下是其中的一些截图,主要是算法步骤部分

算法步骤

前向计算

反向更新

 

个人实现的代码

import glob
import random
import math
import pickle
import numpy as np# 激活函数
def tanh(o, d):x = []for i in o:x.append(math.tanh(i))return xdef get_stopword_list(path):"""载入停用词"""stopword_list = [sw.replace('\n', '')for sw in open(path, 'r', encoding='utf8')]return stopword_listdef data_pre(path):"""数据载入,以及完成分词,统计总词数"""import jiebacontent = []with open(path, 'r', encoding='gbk', errors='ignore') as f:# sw_list = get_stopword_list('./data/stop_words.utf8')for l in f:l = l.strip()if(len(l) == 0):continuel = [x for x in jieba.cut(l) if x not in get_stopword_list('./data/stop_words.utf8')]content.append(l)return content# 随机生成词向量并分配词id
def creat_wv(wd, m):wd = {i: [random.random() for x in range(m)] for i in wd}idd = 0wid = {}for i in wd:wid[i]=wid.get(i,0)+iddidd+=1# wd['space__']=[random.random() for x in range(m)]# wid['space__']=wid.get(i,0)+iddreturn wd,widf = glob.glob(r'./data/news/*.txt')
data = []
wd = {}
c = 0
sf = len(f)
for text in f:c += 1temp = data_pre(text)data.extend(temp)for t in temp:for w in t:wd[w] = wd.get(w, 0)+1print(text+' complete ', end='')print(c/sf)
# print(data)
savedata = np.array(data)
swd = np.array(wd)
np.save('./data/sogo_news.npy',savedata)
np.save('./data/myw2vwd.npy',swd)
# data = np.load('./data/sogo_news.npy').tolist()
# 初始化神经网络
h = 100
v = len(wd)
m = 100
n = 4
win = 2
theta = 0.1 #学习率
# 输入层到隐藏权值,shape=n*m  *  h    n为window的大小,h为隐层神经元个数
H = [[random.random() for j in range(n*m)] for i in range(h)]
H = np.array(H)
d = [random.random() for j in range(h)]  # 隐层偏置 shape=1*h
U = [[random.random() for j in range(h)]for i in range(v)]  # 隐层到输出层权值 shape=h*V V为词的总数目
b = [random.random() for j in range(v)]  # 输出层偏置 shape = 1* V
maxtime = 5
sapce = [0 for i in range(m)]  # 空词向量
wvd,wid = creat_wv(wd, m)  # 随机生成词向量和id
sums = len(data)
while(maxtime>0):maxtime-=1# 训练神经网络sm = 0for s in data:  # s 是一句话aa = (sm+0.0)/sumssm+=1print('less',end='')print(maxtime,end='------------')print(aa)for w in range(len(s)):  # w是目标词下标# 构建输入向量xx = []inputword = []w_id = wid[s[w]]#目标词id# w_id2 = []#输入词for i in range(w-win, w+win+1):# w_id2.append(s[i])if i < 0:x.extend(sapce)elif i == w:continueelif i >= len(s):x.extend(sapce)else:x.extend(wvd[s[i]])inputword.append(s[i])#---前向计算------------------------# 计算隐层输入o = np.dot(x, H.T)+d# 计算隐层输出a = tanh(o, 1)a = np.array(a)# 计算输出层输入U = np.array(U)# H = np.array(H)y = np.dot(a, U.T)+by = y.tolist()# 计算输出p = [math.exp(i) for i in y]S = sum(p)p = [i/S for i in p]#----前向计算结束------------------------#计算目标函数Lif p[w_id] !=0:L = math.log(p[w_id])else:L=2.2250738585072014e-200#----反向传播------------------------la = 0lx = 0ly = [-i for i in p]ly[w_id]+=1b  =np.array(b)ly = np.array(ly)lb = b + theta*lyla= ly[0]*U[0]for j in range(1,v):la+=theta*ly[j]*U[j]for j in range(1,v):U[j]+=theta*lalo = [0 for q in range(len(la))]lo=np.array(lo)for k in range(h):lo[k]=(1-a[k]*a[k])*la[k] lx = np.dot(H.T,lo)d +=theta*lox = np.matrix(x)lo = np.matrix(lo)H += theta*np.dot(lo.T,x)x += theta*lxx = x.tolist()[0]for q in range(len(inputword)):a=x[0+i*m:m+i*m]for j in range(len(a)):wvd[inputword[q]][j]+=a[j]#---反向更新结束
#保存数据
output = open('./data/myw2v.pkl','wb')
pickle.dump(wvd,output)

测试代码

import math
def dis(a,b):s = 0for i in range(len(a)):t=a[i]-b[i]t=t*ts+=treturn math.sqrt(s)import pickle
inputt = open('./data/myw2v.pkl', 'rb') 
wd = pickle.load(inputt)
a = wd['记者']
b = wd['公司']
c = wd['企业']
d = wd['交易']
e = wd['支付']
print(dis(a,b))
print(dis(b,c))
print(dis(e,d))
print(dis(a,e))

 

这篇关于NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189886

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node