NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现

2023-10-11 18:10

本文主要是介绍NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论主要来自论文A Neural Probabilistic Language Model,可以百度到的

这篇博文对理论方面的介绍挺不错的    链接地址

一下是其中的一些截图,主要是算法步骤部分

算法步骤

前向计算

反向更新

 

个人实现的代码

import glob
import random
import math
import pickle
import numpy as np# 激活函数
def tanh(o, d):x = []for i in o:x.append(math.tanh(i))return xdef get_stopword_list(path):"""载入停用词"""stopword_list = [sw.replace('\n', '')for sw in open(path, 'r', encoding='utf8')]return stopword_listdef data_pre(path):"""数据载入,以及完成分词,统计总词数"""import jiebacontent = []with open(path, 'r', encoding='gbk', errors='ignore') as f:# sw_list = get_stopword_list('./data/stop_words.utf8')for l in f:l = l.strip()if(len(l) == 0):continuel = [x for x in jieba.cut(l) if x not in get_stopword_list('./data/stop_words.utf8')]content.append(l)return content# 随机生成词向量并分配词id
def creat_wv(wd, m):wd = {i: [random.random() for x in range(m)] for i in wd}idd = 0wid = {}for i in wd:wid[i]=wid.get(i,0)+iddidd+=1# wd['space__']=[random.random() for x in range(m)]# wid['space__']=wid.get(i,0)+iddreturn wd,widf = glob.glob(r'./data/news/*.txt')
data = []
wd = {}
c = 0
sf = len(f)
for text in f:c += 1temp = data_pre(text)data.extend(temp)for t in temp:for w in t:wd[w] = wd.get(w, 0)+1print(text+' complete ', end='')print(c/sf)
# print(data)
savedata = np.array(data)
swd = np.array(wd)
np.save('./data/sogo_news.npy',savedata)
np.save('./data/myw2vwd.npy',swd)
# data = np.load('./data/sogo_news.npy').tolist()
# 初始化神经网络
h = 100
v = len(wd)
m = 100
n = 4
win = 2
theta = 0.1 #学习率
# 输入层到隐藏权值,shape=n*m  *  h    n为window的大小,h为隐层神经元个数
H = [[random.random() for j in range(n*m)] for i in range(h)]
H = np.array(H)
d = [random.random() for j in range(h)]  # 隐层偏置 shape=1*h
U = [[random.random() for j in range(h)]for i in range(v)]  # 隐层到输出层权值 shape=h*V V为词的总数目
b = [random.random() for j in range(v)]  # 输出层偏置 shape = 1* V
maxtime = 5
sapce = [0 for i in range(m)]  # 空词向量
wvd,wid = creat_wv(wd, m)  # 随机生成词向量和id
sums = len(data)
while(maxtime>0):maxtime-=1# 训练神经网络sm = 0for s in data:  # s 是一句话aa = (sm+0.0)/sumssm+=1print('less',end='')print(maxtime,end='------------')print(aa)for w in range(len(s)):  # w是目标词下标# 构建输入向量xx = []inputword = []w_id = wid[s[w]]#目标词id# w_id2 = []#输入词for i in range(w-win, w+win+1):# w_id2.append(s[i])if i < 0:x.extend(sapce)elif i == w:continueelif i >= len(s):x.extend(sapce)else:x.extend(wvd[s[i]])inputword.append(s[i])#---前向计算------------------------# 计算隐层输入o = np.dot(x, H.T)+d# 计算隐层输出a = tanh(o, 1)a = np.array(a)# 计算输出层输入U = np.array(U)# H = np.array(H)y = np.dot(a, U.T)+by = y.tolist()# 计算输出p = [math.exp(i) for i in y]S = sum(p)p = [i/S for i in p]#----前向计算结束------------------------#计算目标函数Lif p[w_id] !=0:L = math.log(p[w_id])else:L=2.2250738585072014e-200#----反向传播------------------------la = 0lx = 0ly = [-i for i in p]ly[w_id]+=1b  =np.array(b)ly = np.array(ly)lb = b + theta*lyla= ly[0]*U[0]for j in range(1,v):la+=theta*ly[j]*U[j]for j in range(1,v):U[j]+=theta*lalo = [0 for q in range(len(la))]lo=np.array(lo)for k in range(h):lo[k]=(1-a[k]*a[k])*la[k] lx = np.dot(H.T,lo)d +=theta*lox = np.matrix(x)lo = np.matrix(lo)H += theta*np.dot(lo.T,x)x += theta*lxx = x.tolist()[0]for q in range(len(inputword)):a=x[0+i*m:m+i*m]for j in range(len(a)):wvd[inputword[q]][j]+=a[j]#---反向更新结束
#保存数据
output = open('./data/myw2v.pkl','wb')
pickle.dump(wvd,output)

测试代码

import math
def dis(a,b):s = 0for i in range(len(a)):t=a[i]-b[i]t=t*ts+=treturn math.sqrt(s)import pickle
inputt = open('./data/myw2v.pkl', 'rb') 
wd = pickle.load(inputt)
a = wd['记者']
b = wd['公司']
c = wd['企业']
d = wd['交易']
e = wd['支付']
print(dis(a,b))
print(dis(b,c))
print(dis(e,d))
print(dis(a,e))

 

这篇关于NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189886

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基