遥感影像的缨帽(K-T)变换Python实现

2023-10-11 14:10

本文主要是介绍遥感影像的缨帽(K-T)变换Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)介绍

缨帽变换(Kirchhoff Transform,K-T变换) 是一种在遥感图像处理中常用的技术,它可以有效地提取地物的空间特征和频谱信息。本文将对遥感缨帽变换的提出者、原理方法、公式、现在的发展、作用进行详细介绍,并附有相应的图解。

(2)利用程序结果进行出图展示

TM影像的前三个分量的物理意义:
●亮度:TM的6个波段的加权和,反映了总体的反射值。
●绿度: 反映了近红外与可见光部分的差值,绿色生物量的特征。
●湿度:反映了可见光和近红外(1-4波段)与较长的红外(第5, 7波段)的差
值,定义为湿度的根据是第5,7两个波段对土壤湿度和植物湿度最为敏感
在这里插入图片描述

(3)缨帽(K-T)变换变换原理详解

一、提出者

缨帽变换是由德国地球物理学家Gottfried Kirchhoff在19世纪50年代首次提出的。他将电磁波在介质中传播的过程进行了详细研究,并提出了一种计算电磁波在介质表面反射和透射的方法,即遥感缨帽变换。

二、原理方法

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、公式

在这里插入图片描述

(4)Python程序

在这里插入图片描述

# coding=utf-8
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2023/8/23 13:28
@file: yincat.py
@project: main.py
@describe: CWNU
"""
import os
import cv2 as cv
import numpy as np# 构建缨帽变换的转换系数
compose = [[0.3037,0.2793,0.4743,0.5585,0.5082,0.1863],      #对应的亮度分量[-0.2848,-0.2435,-0.5436,0.7243,0.0840,-0.1800],  # 对应的植被分量[0.1509,0.1973,0.3279,0.3406,-0.7112,-0.4572]]    #对应的湿度分量
compose = np.array(compose) # 将列表转为矩阵# 获取影像数据存储于列表
def get_img_list(path):is_image_file = lambda x : any(x.endswith(extension)for extension in ['tif'])tm = [x for x in os.listdir(path) if is_image_file(x)]tm_list = []for j in range(0,len(tm)):tm_path = path + '/' + tm[j]print('the reading img is:',tm_path)tm_list.append(tm_path)print('Successfully reading')return tm_list# 批量读取矩阵并将其存储于列表
def hat_change(list_path):img_base = []for k in range(0,len(list_path)):# print(list_path[k])#  !!!!!一定要记住flags=0,不然会返回三通道img = cv.imread(list_path[k],flags=0)# cv.imshow('tif',img)# cv.waitKey(0)img_base.append(img)return img_base# 缨帽变换
def compose_hat(compose_x,img):res_list = []result_list = []for i in range(0,len(img)):# 获取影像的行列大小row, col = img[i].shape# 将影像转为一维行向量reshape_img = img[i].reshape(row*col)# 传入列表res_listres_list.append(reshape_img)# 波段6不参与,也就是列表的第5行,删除第5行以不参与运算delete_res_list = np.delete(res_list, 5, axis=0)for j in range(0,len(compose_x)):result_data = compose_x[j]@delete_res_list# 判断影像中的空值和0值,用均值代替,防止影像信息缺失for p in range(0,len(result_data)):if result_data[p] == 0 and result_data[p] == None:result_data[p] = np.nanmean(result_data)else:result_data[p] = result_data[p]# 维度转换逆变换,从向量转为二维result_data_data = result_data.astype('uint8').reshape(row,col)# 传给result_listresult_list.append(result_data_data)return result_list# 输出影像
def output(out_path,list):for m in range(0,len(list)):filepath = out_path+'/'+str(m+1)+'.TIF'# cv库写出图像cv.imwrite(filepath,list[m])print('the exporting img is:',filepath)print('Successfully exported!')if __name__ == '__main__':path = "D:/data/result" # 存放TM影像的文件夹路径list = get_img_list(path)img_list = hat_change(list)re_list = compose_hat(compose, img_list)outpath = "D:/data/hat" # 输出路径output(outpath, re_list)

四、现在的发展
随着遥感技术的发展和广泛应用,遥感缨帽变换也得到了进一步的研究和改进。近年来,研究人员结合机器学习、深度学习等技术,提出了一系列基于缨帽变换的新方法,用于地物分类、目标检测、变化检测等应用。同时,缨帽变换在图像处理领域也得到了拓展,可以应用于医学图像分析、遥感图像融合等多个领域。

五、作用
遥感缨帽变换在遥感图像处理中具有广泛的作用。它可以提取地物的空间特征和频谱信息,有助于实现地物的分类、目标检测、变化检测等应用。通过遥感缨帽变换,可以充分利用遥感图像中的信息,

这篇关于遥感影像的缨帽(K-T)变换Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188593

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco