计算机视觉--通过HSV和YIQ颜色空间处理图像噪声

2023-10-11 10:01

本文主要是介绍计算机视觉--通过HSV和YIQ颜色空间处理图像噪声,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机视觉


文章目录

  • 计算机视觉
  • 前言
  • 一、实现步骤
  • 二、实现
  • 总结


前言

利用HSV和YIQ颜色空间处理图像噪声。在本次实验中,我们使用任意一张图片,通过RGB转HSV和YIQ的操作,加入了椒盐噪声并将其转换回RGB格式,最终实现对图像的噪声处理。

一、实现步骤

1、将RGB图像转换为HSV和YIQ格式
我们使用cv2中的cvtColor函数将RGB图像转换为HSV和YIQ格式。COLOR_RGB2HSV和COLOR_RGB2YCrCb表示转换为对应格式。
2、在HSV的H通道加入椒盐噪声
在HSV格式的图像中,我们选择了H通道。通过随机选择像素点的方式,在该像素点的H通道上加入椒盐噪声。具体操作是将该像素点的H值设置为255。
3、在YIQ的Y通道加入椒盐噪声
在YIQ格式的图像中,我们选择了Y通道。同样的方式,通过随机选择像素点的方式,在该像素点的Y通道上加入椒盐噪声。
4、将加入椒盐噪声的H通道、Y通道分别显示
接下来,我们分别显示加入了椒盐噪声的HSV和YIQ格式图像的H通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。
5、合成加入椒盐噪声的HSV、YIQ格式图像
我们将加入了椒盐噪声的HSV、YIQ格式的图像分别转换回RGB格式,方便后续显示。
6、分别将R、G、B通道显示
接下来,我们分别显示原始RGB图像的R、G、B通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。
7、分别将H、S、V通道显示
接下来,我们分别显示加入椒盐噪声的HSV图像的H、S、V通道。其中,H通道使用hsv色彩空间来显示,而S和V通道使用灰度图来显示。
8、显示加入椒盐噪声的HSV、YIQ格式图像
接下来,我们使用matplotlib显示加入椒盐噪声的HSV和YIQ格式的图像。
9、将合成的加入椒盐噪声的HSV、YIQ格式图像分别转换为RGB格式并显示

最后,我们将加入了椒盐噪声的HSV和YIQ格式的图像转换回RGB格式,并使用matplotlib进行显示。

二、实现

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('test.png')
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)# 显示原图
plt.imshow(img)
plt.title('Original RGB image')
plt.show()# 将RGB图像转换为HSV和YIQ格式
img_hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
img_yiq = cv2.cvtColor(img,cv2.COLOR_RGB2YCrCb)# 在HSV的H通道加入椒盐噪声
img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):x = np.random.randint(0, rows)y = np.random.randint(0, cols)    # 将选定像素点的H通道值设为255img_hsv_salt[x, y][0] = 255
img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):x = np.random.randint(0, rows)y = np.random.randint(0, cols)    img_hsv_salt[x, y][0] = 255# 在YIQ的Y通道加入椒盐噪声
img_yiq_salt = img_yiq.copy()
for i in range(100):x = np.random.randint(0,rows)y = np.random.randint(0,cols)img_yiq_salt[x,y][0] = 255# 将加入椒盐噪声的H通道、Y通道分别显示
plt.imshow(img_hsv_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on H channel of HSV')
plt.show()
plt.imshow(img_yiq_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on Y channel of YIQ')
plt.show()# 合成加入椒盐噪声的HSV、YIQ格式图像
img_hsv_salt = cv2.cvtColor(img_hsv_salt,cv2.COLOR_HSV2RGB)
img_yiq_salt = cv2.cvtColor(img_yiq_salt,cv2.COLOR_YCrCb2RGB)# 分别将R、G、B通道显示
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img[:,:,0], cmap='gray')
axs[0].set_title('R')
axs[1].imshow(img[:,:,1], cmap='gray')
axs[1].set_title('G')
axs[2].imshow(img[:,:,2], cmap='gray')
axs[2].set_title('B')
plt.show()# 分别将H、S、V通道显示
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img_hsv[:,:,0], cmap='hsv')
axs[0].set_title('H')
axs[1].imshow(img_hsv[:,:,1], cmap='gray')
axs[1].set_title('S')
axs[2].imshow(img_hsv[:,:,2], cmap='gray')
axs[2].set_title('V')
plt.show()# 显示加入椒盐噪声的HSV、YIQ格式图像
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
axs[0].imshow(img_hsv_salt)
axs[0].set_title('Salt & Pepper noise on H channel of HSV')
axs[1].imshow(img_yiq_salt)
axs[1].set_title('Salt & Pepper noise on Y channel of YIQ')
plt.show()# 将合成的加入椒盐噪声的HSV、YIQ格式图像分别转换为RGB格式并显示
img_hsv_salt_rgb = cv2.cvtColor(img_hsv_salt,cv2.COLOR_RGB2BGR)
img_yiq_salt_rgb = cv2.cvtColor(img_yiq_salt,cv2.COLOR_RGB2BGR)
plt.imshow(img_hsv_salt_rgb)
plt.title('Salt & Pepper noise on H channel of HSV RGB')
plt.show()
plt.imshow(img_yiq_salt_rgb)
plt.title('Salt & Pepper noise on Y channel of YIQ RGB')
plt.show()

总结

在本文中,我们使用RGB转HSV和YIQ的操作,通过加入椒盐噪声并将其转换回RGB格式,对图像进行了噪声处理。我们展示了原始RGB图像以及其R、G、B通道的显示,接着将图像转换为HSV和YIQ格式,并在H通道和Y通道中分别加入了椒盐噪声。然后,我们将加入了噪声的H、S、V通道以及Y通道进行了显示。最后,我们展示了加入椒盐噪声的HSV和YIQ格式图像,并将它们转换回RGB格式进行显示。

通过这样的操作,我们可以进一步了解颜色空间转换在图像处理中的应用,以及如何通过加入噪声来模拟图像中的实际场景。此外,我们还探索了如何通过转换回RGB格式来展示噪声处理后的图像。这些技术在图像去噪、图像增强和其他相关领域中具有重要的应用价值。这些方法对于从图像中去除噪声以及提高图像视觉效果具有重要意义,并且可以在许多实际应用中发挥作用。

这篇关于计算机视觉--通过HSV和YIQ颜色空间处理图像噪声的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/187267

相关文章

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau