SLS机器学习最佳实战:根因分析(一)

2023-10-11 07:20

本文主要是介绍SLS机器学习最佳实战:根因分析(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为何需要根因分析?

当某个宏观的监控指标发生异常时,如果能快速定位到具体是那个细粒度的指标发生了异常而导致的。具体来说,当某个流量发生了异常,具体如图中所示:
1

这个指标就对应是某个小时级别的流量情况,我们要快速定位到2018-09-02 20:00:00 具体发生了什么问题而导致流量突增的?

如何在平台中分析?

  • 原始数据格式
    2

在给定的LogStore中一共存在14天的各个粒度的流量数据,其中涉及的维度为 leaf=(dim1, dim2, dim3, dim4, dim5),在每个时刻,一个leaf节点有一个对应的流量值value,在相同时刻,流量对应有可加性。

  • 异常区间分析
    3

我们在图中,绘制某个异常的区间,算法就会去分析从数据:[起始时刻,异常区间的右边界],遍历所有可能,找到导致该异常的集合。
4

在上图中,红色框部分,展示的所找到的候选集合中各个子元素对应的时序图,其中ds表示当前根因集合对应的整体趋势信息,其它为根因集合中对应的各个元素的时序曲线。对图中各个含义进行说明:
5

  • 具体的调用形式(仅仅事例,展示调用形式)
* not Status:200 | 
select rca_kpi_search(array[ ProjectName, LogStore, UserAgent, Method ],array[ 'ProjectName', 'LogStore', 'UserAgent', 'Method' ], real, forecast, 1) 
from ( 
select ProjectName, LogStore, UserAgent, Method,sum(case when time < 1552436040 then real else 0 end) * 1.0 / sum(case when time < 1552436040 
then 1 else 0 end) as forecast,sum(case when time >=1552436040 then real else 0 end) *1.0 / sum(case when time >= 1552436040 
then 1 else 0 end) as realfrom ( 
select __time__ - __time__ % 60 as time, ProjectName, LogStore, UserAgent, Method, COUNT(*) as real 
from log GROUP by time, ProjectName, LogStore, UserAgent, Method ) 
GROUP BY ProjectName, LogStore, UserAgent, Method limit 100000000)

使用流程

root_cause.gif

根因分析演示 PlayGround 地址


硬广时间

日志进阶

阿里云日志服务针对日志提供了完整的解决方案,以下相关功能是日志进阶的必备良药:

  1. 机器学习语法与函数: https://help.aliyun.com/document_detail/93024.html
  2. 日志上下文查询:https://help.aliyun.com/document_detail/48148.html
  3. 快速查询:https://help.aliyun.com/document_detail/88985.html
  4. 实时分析:https://help.aliyun.com/document_detail/53608.html
  5. 快速分析:https://help.aliyun.com/document_detail/66275.html
  6. 基于日志设置告警:https://help.aliyun.com/document_detail/48162.html
  7. 配置大盘:https://help.aliyun.com/document_detail/69313.html

更多日志进阶内容可以参考:日志服务学习路径。


联系我们

纠错或者帮助文档以及最佳实践贡献,请联系:悟冥
问题咨询请加钉钉群:

f5d48178a8f00ad1b8e3fffc73fb9158b3f8fe10_jpeg

这篇关于SLS机器学习最佳实战:根因分析(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186447

相关文章

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字