数据闭环与AutoLabeling方案总结!(Waymo/Uber/Open MMLab)

2023-10-11 02:40

本文主要是介绍数据闭环与AutoLabeling方案总结!(Waymo/Uber/Open MMLab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者 | AmazingRoad  编辑 | 汽车人

原文链接:zhuanlan.zhihu.com/p/587140851

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【全栈算法】技术交流群

后台回复【标定工具】获取2D检测/分割/关键点,3D点云检测分割标注工具!

1什么是数据闭环

自动驾驶中的数据闭环,是指算法研发由case-driven转向data-driven的核心步骤。我大概整理了下数据闭环的链路,如下图所示:

282f345fe17c60cb77bb797d869995bc.png
数据闭环链路
  • 链路中的环节包含工具链路打通和算法开发两部分。

  • 算法开发主要有数据挖掘、数据标注、模型优化这三部分。

  • 这里面数据标注中的自动标注,即AutoLabeling是目前数据闭环中最为核心的部分。

  • 数据挖掘和模型优化,也是需要攻克和解决的点,只不过从成本和效率上,目前优先级没有自动标注高。

2AutoLabeling方案

以下的讨论以目标检测任务为例。

Pipeline

  • 目标检测任务的主要pipeline流程包含目标检测、轨迹生成、轨迹优化三部分

  • 其中目标检测模型、MOT算法,都有比较成熟的算法,所以AutoLabeling中创新点主要体现在轨迹优化这个步骤。

47574e2b3c7425c779468080e1896466.png
AutoLabeling Pipeline

学术界的SOTA

目前关于AutoLabeling的完整方案方面的论文不是很多,这里面比较有代表性的有:

  • 谷歌的Waymo在2021年发表的:《Offboard 3D Object Detection from Point Cloud Sequences》

  • Uber的ATG(Advanced Technology Group)在2021年发表的:《Auto4D: Learning to Label 4D Objects from Sequential Point Clouds》

  • Open MMLab在2022年发表的:《MPPNet: Multi-Frame Feature Intertwining with Proxy Points for 3D Temporal Object Detection》

下面对这三篇文章做了个简单地总结和对比:

论文机构轨迹优化的方法发表年限
Auto4DUberBEV空间特征2021.01
Offboard3DWaymoPoint-Based2021.03
MPPNetOpenMMLabFormer(基于Attention)2022

Auto4D的轨迹优化

  • Size Branch: 累积全轨迹点(时域信息忽略),BEV编码,得到全局的稳定size。

  • Update:基于最近corner align,更新全轨迹的box属性。

  • Path Branch:累积全轨迹点(保留时域信息,但时域和高度channel合并),BEV编码,得到相邻帧位移

c64c071162481fbcc9db3009d7f3fdfc.png

Offboard3D的轨迹优化处理

  • 动静态判断:box中心点方差<1m/s^2,首尾帧中心点偏移<1m,则为静态,否则为动态。

  • 静态轨迹优化:前背景分割网络对box周围的原始点进行分割,box回归网络得到box属性(基于PointNet)

  • 动态轨迹优化:对于点进行前背景分割+点序列编码,对于框进行序列编码,最后加2层box回归网络。

3d3805cf630388042770d4562a0bd5bb.png

MPPNet

  • 选取代理点:每个框均匀选择代理点(4x4x4)

  • 单帧提取特征:提取几何特征、运动特征

  • 组内特征编码:x、y、z、c通道分割使用MLP进行feature mixing

  • 组间特征编码:使用Former结构,共享K、V,进行feature mixing

  • 3D检测头:使用Tranformer Decoder

fb87d373145edfe2bfa3ce568e351799.png

往期回顾

Make RepVGG Greater Again!揭示重参化量化崩溃根因并解决(美团)

788b9ae924c7b4fb895ba282629b930a.png

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、规划控制、模型部署落地、自动驾驶仿真测试、硬件配置、AI求职交流等方向;

2962b098f70c63cabb1a3c35e0ee411a.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

自动驾驶之心【知识星球】

想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球(三天内无条件退款),日常分享论文+代码,这里汇聚行业和学术界大佬,前沿技术方向尽在掌握中,期待交流!

996732cc82675b44cf5e845e197c0187.jpeg

这篇关于数据闭环与AutoLabeling方案总结!(Waymo/Uber/Open MMLab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184945

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装