python中pytorch的广播机制——Broadcasting

2023-10-11 02:36

本文主要是介绍python中pytorch的广播机制——Broadcasting,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

广播机制

numpy 在算术运算期间采用“广播”来处理具有不同形状的 array ,即将较小的阵列在较大的阵列上“广播”,以便它们具有兼容的形状。Broadcasting是一种没有copy数据的expand

  • 不过两个维度不相同,在前面插入维度1
  • 扩张维度1到相同的维度

例如:Feature maps:[4,32,14,14]
Bias:[32,1,1]=>[1,32,1,1]=>[4,32,14,14]

A:[32,1,1]=>[1,32,1,1]=>[4,32,14,14]
B:[4,32,14,14]
这里就可以进行相同维度的相加

image


比如说一个[4,1]+[1,2]
那么这个[4,1]可以再复制列变为[4,2]
[1,2]可以再复制4行变为[4,2]

首先用1将那个小的维度的tensor扩展成大的维度相同的维度,然后将1扩张成两者的相同维度,如果有两个维度不相同,并且都不是1的话,则不能broadcasting

 

广播规则

当对两个 array 进行操作时,numpy 会逐元素比较它们的形状。从尾(即最右边)维度开始,然后向左逐渐比较。只有当两个维度 1)相等 or 2)其中一个维度是1 时,这两个维度才会被认为是兼容。

如果不满足这些条件,则会抛出 ValueError:operands could not be broadcast together 异常,表明 array 的形状不兼容。最终结果 array 的每个维度尽可能不为 1 ,是两个操作数各个维度中较大的值 。

例如,有一个 256x256x3 的 RGB 值图片 array ,需要将图像中的每种颜色缩放不同的值,此时可以将图像乘以具有 3 个值的一维 array 。根据广播规则排列这两个 array 的尾维度大小,是兼容的:

 图片(3d array): 256 x 256 x 3
缩放(1d array):             3
结果(3d array): 256 x 256 x 3

当比较的任一维度是 1 时,使用另一个,也就是说,大小为 1 的维度被拉伸或“复制”以匹配另一个维度。
在以下示例中,A 和 B 数组都有长度为 1 的维度,在广播操作期间扩展为更大的大小:

A      (4d array):  8 x 1 x 6 x 1
B      (3d array):      7 x 1 x 5
result (4d array):  8 x 7 x 6 x 5

以二维为例,更加方便的解释“广播”:
已知 a.shape 是(5,1),b.shape 是(1,6),c.shape 是(6,),d.shape 是(), d 是一个标量, a, b, c,和 d 都可以“广播”到维度 (5,6);

a “广播”为一个 (5,6) array ,其中 a[:,0] 被“广播”到其他列,
b “广播”为一个 (5,6) array ,其中 b[0,:] 被广播到其他行,
c 类似于 (1,6) array ,其中 c[:] 广播到每一行,
d 是标量,“广播”为 (5,6) array ,其中每个元素都一样,重复d值。
 

A      (2d array):      2 x 1
B      (3d array):  8 x 4 x 3 # 倒数第二个维度不兼容
>>> a = np.array([[ 0.0,  0.0,  0.0],
...               [10.0, 10.0, 10.0],
...               [20.0, 20.0, 20.0],
...               [30.0, 30.0, 30.0]])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a + b
array([[  1.,   2.,   3.],[11.,  12.,  13.],[21.,  22.,  23.],[31.,  32.,  33.]])
>>> b = np.array([1.0, 2.0, 3.0, 4.0])
>>> a + b
Traceback (most recent call last):
ValueError: operands could not be broadcast together with shapes (4,3) (4,)

 

 

在某些情况下,广播会拉伸两个 array 以形成一个大于任何一个初始 array 的结果 array 。 

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1.,   2.,   3.],[11.,  12.,  13.],[21.,  22.,  23.],[31.,  32.,  33.]])

 

newaxis 运算符将新轴插入到 a 中,使其成为二维 4x1 array 。将 4x1 array 与形状为 (3,) 的 b 组合,产生一个 4x3 array 。 

这里注意要都从右端进行匹配:
A:[                     ]
B:          [           ]
就是这样补充
我们看个例子吧:

a=torch.randn(2,3,4)
b=torch.randn(2,3)
a+b
#The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 2

image


但是这样是可以的

image


也就是(2,3,4)+(2,3)是不可以的,(2,3,4)+(3,4)是可以的,因为他们是右看齐的。

Situation 1:
▪ [4, 32, 14, 14]
▪ [1, 32, 1, 1] => [4, 32, 14, 14]

Situation 2
▪ [4, 32, 14, 14]
▪ [14, 14] => [1, 1, 14, 14] => [4, 32, 14, 14]

Situation 3
▪ [4, 32, 14, 14]
▪ [2, 32, 14, 14]
▪ Dim 0 has dim, can NOT insert and expand to same
▪ Dim 0 has distinct dim, NOT size 1
▪ NOT broadcasting-able

Situation 4
▪ [4, 32, 14, 14]
▪ [4, 32, 14]
这样是不行的,因为我们要右看齐,match from
last dim

Situation 5
▪ [4, 3, 32, 32]
▪ + [32, 32]
▪ + [3, 1, 1]
▪ + [1, 1, 1, 1]
这都是可以的

这篇关于python中pytorch的广播机制——Broadcasting的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184911

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核