使用普拉特分析法解析极为复杂的算术表达式

2023-10-10 20:10

本文主要是介绍使用普拉特分析法解析极为复杂的算术表达式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

!3*-5+(add(6,7)/foobar);

上面是一个很复杂的表达式,它的解析涉及到操作符优先级,例如乘法比加法优先级高,但括号优先级又比乘法优先级高,于此同时,在解析时,编译器需要把-和5结合解读成”-5”后才能参与运算,并且编译器要知道,add(6,7)是一个函数调用,它需要执行add(6,7),获得函数运行后返回值才能继续参与算术表达式的运算。

算术表达式解析时要考虑的因素之多,使得它成为了编译原理中有关语法解析这部分的重点和难点,理解了算术表达式的解析算法,不但能执编译原理牛耳,而且解析算法的设计和实现充分展示了计算机科学中“分而治之”和“递归”的精妙核心原则。

编译原理一大难点在于,它蕴含很多抽象的概念,而很多复杂算法的设计和实现有赖于对这些抽象概念的理解和把握,一方面概念的抽象性已经让人头大,再加上算法的复杂性,这就使得编译原理难上加难,让人望而却步。好在普拉特解析法有别与传统的编译原理语法解析算法,它简单,精致,易理解,我们看看普拉特解析法是如何巧妙的解决上面复杂算术表达式的解析的。

前序表达式的解析

在上面复杂的算术表达式中,有这样的组成部分:
!3 和 -5
这种成分的特点是,有一个操作符放在数字的前面,在运算整个算术式子时,需要先执行上面这些运算后,所得结果才能参与到整个算术式的运算中,我们把这种算术式成为前序表达式。我们看看普拉特解析法是如何解析上面的式子的,原理我们先不分析,先直接从代码实现开始。在MonkeyCompilerParser.js中,添加下面代码:

class PrefixExpression extends Expression {constructor(props) {super(props)this.token = props.tokenthis.operator = props.operatorthis.right = props.expressionvar s = "(" + this.operator + this.right.getLiteral() + " )"this.tokenLiteral = s}
}

上面代码定义的类就用来表示前序表达式,其中的operator就是表达式中的操作符,this.right对应的就是操作符后面的成分。接着我们在解析表中增加对前序表达式的解析函数:

class MonkeyCompilerParser {constructor(lexer) {....this.prefixParseFns[this.lexer.BANG_SIGN] = this.parsePrefixExpressionthis.prefixParseFns[this.lexer.MINUS_SIGN] =this.parsePrefixExpression....}....    
}

this.lexer.BANG_SIGN 对应的就是表达式中的符号”!”,它表示做取反操作,this.lexer.MINUS_SIGN 对应表达式中的”-“,它表示做取负操作。上面代码表示,一旦语法解析器解析到符号”!”和”-“时,解析器便调用parsePrefixExpression函数进行处理,我们看看它的实现:

parsePrefixExpression(caller) {var props = {}props.token = caller.curTokenprops.operator = caller.curToken.getLiteral()caller.nextToken()props.expression = caller.parseExpression(caller.PREFIX)return new PrefixExpression(props)}

解析函数在执行时,先记录前序操作符,也就是caller.curToken,这个变量对应的token其实就是符号”!”或者”-“。然后调用nextToken()把读取下一个token,在前序操作符后面跟着的是一个算术表达式,所以直接调用parseExpression进行解析就可以,当前我们把算术表达式简化为数字字符串或变量字符串,所以现在我们的解析器只支持”!”或”-“后面跟着一个数组或变量。

在这里我们需要注意到一个定义上的循环重复。前序表达式是算术表达式的一部分,也就是后者包含了前者。然后前序表达式在去掉前序操作符后,接着的确是一个算术表达式,也就是说前序表达式包含了算术表达式,这就形成一个概念定义上的反复包含,我包含你与此同时你又包含我,这种成分的互相包含性是编译原理理解起来的难点所在。

上面代码完成后,我们在编辑框中输入前序表达式进行解析:
这里写图片描述

点击下方的parsing按钮后,在控制台里可以看到解析结果:

这里写图片描述

于是,添加上面代码后,语法解析去就能接受并理解前序表达式。

中序表达式

前序表达式的操作符在操作数的前面,对应的中序表达式意味着操作符在操作数的中间,例如:

3+52*3;
3*!foobar
4+5*6

上面的式子中,操作符两边各有一个操作数,第三个表达式,操作符”*”右边甚至还包含了一个前序表达式。在解析中序表达式时,还得注意运算符的优先级,例如第4个表达式需要先做乘法再做加法,也就是说后半部分”5*6”需要当做一个整体看待。

我们先在代码中定义符号的优先级和配置中序表达式的解析函数表:

class MonkeyCompilerParser {constructor(lexer) {...this.initPrecedencesMap()this.registerInfixMap()}initPrecedencesMap() {this.precedencesMap = {}this.precedencesMap[this.lexer.EQ] = this.EQUALSthis.precedencesMap[this.lexer.NOT_EQ] = this.EQUALSthis.precedencesMap[this.lexer.LT] = this.LESSGREATERthis.precedencesMap[this.lexer.GT] = this.LESSGREATERthis.precedencesMap[this.lexer.PLUS_SIGN] = this.SUMthis.precedencesMap[this.lexer.MINUS_SIGN] = this.SUMthis.precedencesMap[this.lexer.SLASH] = this.PRODUCTthis.precedencesMap[this.lexer.ASTERISK] = this.PRODUCTthis.precedencesMap[this.lexer.LEFT_PARENT] = this.CALL}
peekPrecedence() {var p = this.precedencesMap[this.peekToken.getType()]if (p != undefined) {return p}return this.LOWEST}curPrecedence() {var p = this.precedencesMap[this.curToken.getType()]if (p != undefined) {return p}return this.LOWEST}registerInfixMap() {this.infixParseFns = {}this.infixParseFns[this.lexer.PLUS_SIGN] = this.parseInfixExpressionthis.infixParseFns[this.lexer.MINUS_SIGN] = this.parseInfixExpressionthis.infixParseFns[this.lexer.SLASH] = this.parseInfixExpressionthis.infixParseFns[this.lexer.ASTERISK] = this.parseInfixExpressionthis.infixParseFns[this.lexer.EQ] = this.parseInfixExpressionthis.infixParseFns[this.lexer.NOT_EQ] = this.parseInfixExpressionthis.infixParseFns[this.lexer.LT] = this.parseInfixExpressionthis.infixParseFns[this.lexer.GT] = this.parseInfixExpression}

函数initPrecedenceMap用来把操作符的优先级设置到一个哈希表中,当解析器读取到不同的操作符时,它就根据当前读到的操作符到表里面查找对应的优先级,根据不同优先级采取不同操作。像前序分析一样,在解析中序表达式时,我们也配置一个解析调用表,当解读到中序操作符时,例如读取到符号“*, + , -, !=, <, >”时,解析器拿着这些符号到解析表infixParseFns去获取一个解析函数,然后直接执行。我们再看看这个函数的实现:

parseInfixExpression(caller, left) {var props = {}props.leftExpression = leftprops.token = caller.curTokenprops.operator = caller.curToken.getLiteral()var precedence = caller.curPrecedence()caller.nextToken()props.rightExpression = caller.parseExpression(precedence)return new InfixExpression(props)}

上面的函数调用时,需要传入一个参数叫left,可以猜测,这个left就是操作符左边部分,而right对应的就是右边部分,对于表达式”2+3”,上面代码中的leftExpression对应的就是表达式”2”,代码中的rightExpression对应加号后面的表达式”3”。

接着我们看看解析流程的改变:

parseExpression(precedence) {var prefix = this.prefixParseFns[this.curToken.getType()]if (prefix === null) {console.log("no parsing function found for token " + this.curToken.getLiteral())return null}var leftExp = prefix(this)if (this.peekTokenIs(this.lexer.SEMICOLON) != true &&precedence < this.peekPrecedence()) {var infix = this.infixParseFns[this.peekToken.getType()]if (infix === null) {return leftExp}this.nextToken()leftExp = infix(this, leftExp)}return leftExp}

parseExpression被调用来解析解析表达式时,它先从前序解析表中,用当前读取的token查找一个解析函数来解析表达式的前半部分,此时符号的优先级开始发挥作用,例如表达式”4+5*6”,在解析时,”4”会先解析,解析后对应的就是leftExp,由于4后面跟着+而不是分号,因此会进入if部分,此时当前的token对应的就是符号”+”,于是在中序解析表中,用符号”+”找到一个解析函数,也就是函数parseInfixExpression,然后执行它,并且把加号左边的表达式”4”当做参数传入,在parseInfixExpression中,它先在符号优先级表中查找加号的优先级,并把优先级当做参数,再次调用parseExpression来解析加号后面的表达式。

在执行parseExpression时,它会把乘号左边的5解析成一个表达式,也就对应变量leftExp。此时5后面跟着的不是分号而是乘号,代码调用peekPrecedence()在操作符优先级表中查找乘号的优先级,然后跟传进来的加号优先级比较,乘号的优先级肯定比加号优先级大,于是进入if部分,接着从中序表达式解析表中找到解析函数parseInfixExpression,执行它后,把乘号后面的数字6解析成一个表达式。注意到,此时代码在调用parseInfixExpression时,把leftExp当做参数传入,而leftExp对应的是表达式5,于是表达式”5”加上符号”*”以及表达式”6”就被结合成一个整体,这就跟算术法则保持一致,也就是解析器会先处理”5*6”,再把所得结果与前面的表达式”4”做加法运算。

当完成上面代码后,在编辑框中输入以下内容:

这里写图片描述

点击解析后,在控制台中输出结果如下:

这里写图片描述

我们看到,在解析结果中,”5*6”确实是组合成一个整体来被解读的。本文只讲解了代码的设计和运行逻辑,他们的理解需要结合调试演示才好深入理解,请点击下面的链接观看讲解视频:

更详细的讲解和代码调试演示过程,请点击链接

下一节我们将深入探讨普拉特解析法的算法原理,并证明为什么普拉特解析法是行之有效的语法解析算法。

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于使用普拉特分析法解析极为复杂的算术表达式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182798

相关文章

mybatis-plus QueryWrapper中or,and的使用及说明

《mybatis-plusQueryWrapper中or,and的使用及说明》使用MyBatisPlusQueryWrapper时,因同时添加角色权限固定条件和多字段模糊查询导致数据异常展示,排查发... 目录QueryWrapper中or,and使用列表中还要同时模糊查询多个字段经过排查这就导致只要whe

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典