飞桨课程创意项目:基于Paddlehub实现人像背景虚化

2023-10-10 14:10

本文主要是介绍飞桨课程创意项目:基于Paddlehub实现人像背景虚化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用deeplabv3p_xception65_humanseg与PIL.ImageFilter模块实现人像背景虚化

感兴趣的同志可以直接点AI Studio项目地址,可直接运行 :[基于paddlehub实现人像背景虚化]

设计思路
在这里插入图片描述

# 首先安装 paddlehub
!pip install paddlehub --upgrade
!pip install paddlepaddle --upgrade
# 导入包
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt 
import matplotlib.image as mpimg
import numpy as np
import math
from PIL import Image, ImageFilter

第一步—获取人像

module = hub.Module(name="deeplabv3p_xception65_humanseg")
picture = 'Taylor2.jpg'
results = module.segmentation(images=[cv2.imread(picture)], visualization=True, output_dir = './humanseg_output') 
# 抠图路径 留作后用
fore_image = results[0]['save_path']
plt.figure(figsize=(10,10))
# 原图
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
# 抠图
show_fore_image = mpimg.imread(results[0]['save_path'])
f = plt.subplot(122)
plt.imshow(show_fore_image)
plt.axis('off')
plt.show

有关paddlehub中的deeplabv3p_xception65_humanseg请点这里

在这里插入图片描述

第二步—虚化原始图片

# picture = 'Taylor2.jpg'
back_image = 'blured'+picture # 虚化图片名字
img = Image.open(picture)
blured_img = img.filter(ImageFilter.BLUR)  # 使用标准模糊
blured_img.save(back_image, quality=100)
show_blured_img = mpimg.imread(back_image)
plt.figure(figsize=(10,10))
# 原图 
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
# 虚化后的图
f = plt.subplot(122)
plt.imshow(show_blured_img)
plt.axis('off')
plt.show

在这里插入图片描述

第三步—加权合成两张图并展示结果

# 定义加权合成函数
def images_fusion(fore_image, back_image, save_name):"""将抠出的人物图像换背景fore_image: 前景图片,抠出的人物图片back_image: 背景图片"""# 读入图片back_image = Image.open(back_image).convert('RGB')# fore_image = Image.open(fore_image).resize(back_image.size)  统一尺寸, 本项目不需要resizefore_image = Image.open(fore_image)# 图片加权合成scope_map = np.array(fore_image)[:, :, -1] / 255scope_map = scope_map[:, :, np.newaxis]scope_map = np.repeat(scope_map, repeats=3, axis=2)res_image = np.multiply(scope_map, np.array(fore_image)[:, :, :3]) + np.multiply((1 - scope_map),np.array(back_image))# 保存图片res_image = Image.fromarray(np.uint8(res_image))res_image.save(save_name)
# 展示结果
images_fusion(fore_image=fore_image, back_image=back_image, save_name='result.jpg')
img = mpimg.imread("result.jpg")# 原图
plt.figure(figsize=(10,10))
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
f = plt.subplot(122)
# 合成后的背景虚化图
plt.imshow(img)
plt.axis('off')
plt.show()

在这里插入图片描述

封装成函数

# 获取分割的人像图片
def get_fore_image(picture):module = hub.Module(name="deeplabv3p_xception65_humanseg")results = module.segmentation(images=[cv2.imread(picture)], visualization=True, output_dir = './humanseg_output')fore_image = results[0]['save_path']return fore_image# 获取虚化图片
def  get_back_image(picture):back_image = 'blured'+picture # 虚化图片名字img = Image.open(picture)blured_img = img.filter(ImageFilter.BLUR)  # 使用标准模糊blured_img.save(back_image, quality=100)return back_image# 融合虚化图片和人像图片
def images_fusion_final(fore_image, back_image, picture):"""将抠出的人物图像换背景fore_image: 前景图片,抠出的人物图片back_image: 背景图片"""# 读入图片back_image = Image.open(back_image).convert('RGB')# fore_image = Image.open(fore_image).resize(back_image.size)  统一尺寸, 本项目不需要resizefore_image = Image.open(fore_image)# 图片加权合成scope_map = np.array(fore_image)[:, :, -1] / 255scope_map = scope_map[:, :, np.newaxis]scope_map = np.repeat(scope_map, repeats=3, axis=2)res_image = np.multiply(scope_map, np.array(fore_image)[:, :, :3]) + np.multiply((1 - scope_map),np.array(back_image))# 保存图片res_image = Image.fromarray(np.uint8(res_image))picture_result = 'result_'+picture # 保存的名字res_image.save(picture_result)return picture_resultdef show_result(picture):fore_image = get_fore_image(picture)back_image = get_back_image(picture)picture_result = images_fusion_final(fore_image,back_image,picture)img = mpimg.imread(picture_result)# 原图plt.figure(figsize=(10,10))f = plt.subplot(121)show_picture = mpimg.imread(picture)plt.imshow(show_picture)plt.axis('off')# 合成后的背景虚化图f = plt.subplot(122)plt.imshow(img)plt.axis('off')plt.show()

效果展示

# 可以分别执行观察效果
show_result(picture='test1.jpg')
# show_result(picture='test2.jpg')
# show_result(picture='Taylor2.jpg')

在这里插入图片描述
AI Stuido项目地址 :基于paddlehub实现人像背景虚化

总结

  1. 本项目采用虚化图+人像图合成的方式完成背景虚化,因此人像分割是否精确直接决定最终效果
  2. 对于前景后景区分度明显且人物较近的图片,实现效果最佳
  3. 现在在网上找一张没有虚化过背景的图片来做测验实在太难了,只能找人家的私房照了…
  4. 缺点:由于是两张图的加权和,所以合成图像中的任务可能也很会有些模糊的效果。

参考资料(项目):基于PaddleHub实现美颜及背景更换

这篇关于飞桨课程创意项目:基于Paddlehub实现人像背景虚化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180961

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方