极大极小算法和AlphaBeta剪枝算法学习总结

2023-10-10 10:59

本文主要是介绍极大极小算法和AlphaBeta剪枝算法学习总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为菜鸟,先贴上参考博文:

1.极小极大算法

2.<<CS 161 Recitation Notes - The Minimax Algorithm>>

3.《PC游戏编程-人机博弈》-作者陈其,王小春

本文目录:

  1. 直观图解
  2. 伪代码
  3. 习题实战

适用范围:极小极大算法常用于零和博弈游戏中,零和博弈指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作的可能。博弈游戏,目的是寻找最优的方案使得自己能够利益最大化。

先来个直观理解

极大极小算法

基本思想就是假设自己足够聪明,总是选择最利于自己(A)的方案,而对手同样聪明,总是选择最不利与对方即A方的方案。

设:正方形代表自己(A),圆代表对手(B),节点的每个孩子节点代表一个候选方案。

                        

上图中显示了所有候选方案。让我们如下分析:(注意:根节点为当前局面,某一结点的子节点为下一步走法产生的局面。图中的所有数字都是A的利益值,可以由估值函数得出,越大越有利于A)

                                            

假设A选择第一个方案,B有两个候选方案,B为了使得A利益最小化,所有在7和3中选择了3,所以A只能获得3。  

                                               

假设A选择第二个方案,B只有一个选择,A最终可以获得15。

                     

假设A选择第三个方案,B有4个可选方案,为了使得A利益最小,B选择第一个方案,则A只能获得利益1。

                        

 

A为了使得自己利益最大,所以A会选择第二个方案,即获得利益15。

从上图可以看出,B总是选择候选方案中的最小值,而A总是选择候选方案中的最大值,极小极大的名字也就源于此。该算法使用深度优先搜索(Depth First Search)遍历决策树来填充树中间节点的利益值,叶子节点的利益值通常是通过一个利益评估函数算

有时候为了得到较好的效果不得不增加搜索树的深度,这样就增加了大量的计算。为了加快计算速度,减少计算量,可以使用Alpha-Beta剪枝算法(Alpha Beta Pruning)对搜索树进行剪枝。因为搜索树中有很多分支不需要遍历。

Alpha-Beta剪枝算法(Alpha Beta Pruning) 

Alpha-Beta剪枝用于裁剪搜索树中没有意义的不需要搜索的树枝,以提高运算速度。

假设α为下界,β为上界,对于α ≤ N ≤ β:

若 α ≤ β  则N有解。

 若 α > β 则N无解。

 下面通过一个例子来说明Alpha-Beta剪枝算法。

                   

上图为整颗搜索树。这里使用极小极大算法配合Alpha-Beta剪枝算法,正方形为自己(A),圆为对手(B)。

初始设置α为负无穷大,β为正无穷大。 

                                  

对于B(第四层)而已,尽量使得A获利最小,因此当遇到使得A获利更小的情况,则需要修改β。这里3小于正无穷大,所以β修改为3。

                                  

(第四层)这里17大于3,不用修改β。

                                  

对于A(第三层)而言,自己获利越大越好,因此遇到利益值大于α的时候,需要α进行修改,这里3大于负无穷大,所以α修改为3

                                   

B(第四层)拥有一个方案使得A获利只有2,α=3,  β=2, α > β, 说明A(第三层)只要选择第二个方案, 则B必然可以使得A的获利少于A(第三层)的第一个方案,这样就不再需要考虑B(第四层)的其他候选方案了,因为A(第三层)根本不会选取第二个方案,多考虑也是浪费.

                                        

B(第二层)要使得A利益最小,则B(第二层)的第二个方案不能使得A的获利大于β, 也就是3. 但是若B(第二层)选择第二个方案, A(第三层)可以选择第一个方案使得A获利为15, α=15,  β=3, α > β, 故不需要再考虑A(第三层)的第二个方案, 因为B(第二层)不会选择第二个方案.

 

A(第一层)使自己利益最大,也就是A(第一层)的第二个方案不能差于第一个方案, 但是A(第三层)的一个方案会导致利益为2, 小于3, 所以A(第三层)不会选择第一个方案, 因此B(第四层)也不用考虑第二个方案.

 

当A(第三层)考虑第二个方案时,发现获得利益为3,和A(第一层)使用第一个方案利益一样.如果根据上面的分析A(第一层)优先选择了第一个方案,那么B不再需要考虑第二种方案,如果A(第一层)还想进一步评估两个方案的优劣的话, B(第二层)则还需要考虑第二个方案,若B(第二层)的第二个方案使得A获利小于3,则A(第一层)只能选择第一个方案,若B(第二层)的第二个方案使得A获利大于3,则A(第一层)还需要根据其他因素来考虑最终选取哪种方案.

 再来看看伪代码

极大极小算法伪代码:

int MaxMin(position p,int d)
{int bestvalue,value;if(game over)   //检查游戏是否结束 return evaluation(p);// 游戏结束,返回估值 if(depth<=0)    //检查是否是叶子节点 return evaluation(p);//叶子节点,返回估值 if(max)         //极大值点 bestvalue=-INFINTY;else            //极小值点 bestvalue=INFINTY;for(each possibly move m){MakeMove(m);    //走棋 value=MaxMin(p,d-1);UnMakeMove(m);  //恢复当前局面 if(max)bestvalue=max(value,bestvalue);//取最大值 elsebestvalue=min(value,bestvalue);//取最小值 }return bestvalue;
}
//  end of MaxMin algorithm

 

 

 

将Alpha剪枝和Beta剪枝加入MaxMin搜索就得到AlphaBeta搜索,AlphaBeta搜索的伪代码如下

//伪代码,Alpha剪枝和Beta剪枝+MaxMin搜索
int AlphaBeta(nPlay,nAlpha,nBeta)
{if(game over)return Eveluation;   //胜负已分,返回估值if(nPly==0)return  Eveluation;  //叶子节点返回估值if(Is Min Node)          //判断 节点类型 {        // 极小值节点for(each possible move m){make move m;      //生成新节点score=AlphaBeta(nPly-1,nAlpha,nBeta)//递归搜索子节点unmake move m;//撤销搜索过的节点if(score<nBeta){nBeta=score;//取极小值if(nAlpha>=nBeta)return nAlpha;//alpha剪枝,抛弃后继节点 } }return nBeta;//返回最小值 }else{//取极大值的节点 for(each possible move m){make move m;      //生成新节点score=AlphaBeta(nPly-1,nAlpha,nBeta)//递归搜索子节点unmake move m;//撤销搜索过的节点if(score>nAlpha){nAlpha=score;//取极小值if(nAlpha>=nBeta)return nBeta;//nBeta剪枝,抛弃后继节点 } }return nAlpha;//返回最小值 } 
} 
//end of AlphaBeta pseudocode

来点真的

习题链接,真枪实战

1.三角点格棋

2.Stake Your Claim

 

3.Find the Winning Move

这篇关于极大极小算法和AlphaBeta剪枝算法学习总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179975

相关文章

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.