【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业

本文主要是介绍【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 内容

在这里插入图片描述

T1.

参考SLAM14讲P247直接可写,注意 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2之间有约束(关系)。
在这里插入图片描述

套用舒尔补公式:
marg掉 ξ 1 \xi_1 ξ1之后,信息被传递到 L 1 和 L 2 L_1和L_2 L1L2之间了。
在这里插入图片描述

T2.

T3.

课上同学的作业分享:
在这里插入图片描述

在这里插入图片描述

算是勉强看着答案做出来了:
在这里插入图片描述
1.
在这里插入图片描述
我的维度不对 ,H的分布就是先pose,再路标点,所以先计算完pose的Jacobian才能计算landmark的Jacobian

那个Jacobian看不懂怎么算的。

在这里插入图片描述

  1. 整体代码
//
// Created by hyj on 18-11-11.
//
#include <iostream>
#include <vector>
#include <random>  
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Eigenvalues>struct Pose
{Pose(Eigen::Matrix3d R, Eigen::Vector3d t):Rwc(R),qwc(R),twc(t) {};Eigen::Matrix3d Rwc;Eigen::Quaterniond qwc;Eigen::Vector3d twc;
};
int main()
{int featureNums = 20;int poseNums = 10;int diem = poseNums * 6 + featureNums * 3;double fx = 1.;double fy = 1.;Eigen::MatrixXd H(diem,diem);H.setZero();std::vector<Pose> camera_pose;double radius = 8;for(int n = 0; n < poseNums; ++n ) {double theta = n * 2 * M_PI / ( poseNums * 4); // 1/4 圆弧// 绕 z轴 旋转Eigen::Matrix3d R;R = Eigen::AngleAxisd(theta, Eigen::Vector3d::UnitZ());Eigen::Vector3d t = Eigen::Vector3d(radius * cos(theta) - radius, radius * sin(theta), 1 * sin(2 * theta));camera_pose.push_back(Pose(R,t));}// 随机数生成三维特征点std::default_random_engine generator;std::vector<Eigen::Vector3d> points;for(int j = 0; j < featureNums; ++j){std::uniform_real_distribution<double> xy_rand(-4, 4.0);std::uniform_real_distribution<double> z_rand(8., 10.);double tx = xy_rand(generator);double ty = xy_rand(generator);double tz = z_rand(generator);Eigen::Vector3d Pw(tx, ty, tz);points.push_back(Pw);for (int i = 0; i < poseNums; ++i) {Eigen::Matrix3d Rcw = camera_pose[i].Rwc.transpose();Eigen::Vector3d Pc = Rcw * (Pw - camera_pose[i].twc);double x = Pc.x();double y = Pc.y();double z = Pc.z();double z_2 = z * z;Eigen::Matrix<double,2,3> jacobian_uv_Pc;// Jacobian of residual with respect to point in camera coordinatejacobian_uv_Pc<< fx/z, 0 , -x * fx/z_2,0, fy/z, -y * fy/z_2;Eigen::Matrix<double,2,3> jacobian_Pj = jacobian_uv_Pc * Rcw;Eigen::Matrix<double,2,6> jacobian_Ti;jacobian_Ti << -x* y * fx/z_2, (1+ x*x/z_2)*fx, -y/z*fx, fx/z, 0 , -x * fx/z_2,-(1+y*y/z_2)*fy, x*y/z_2 * fy, x/z * fy, 0,fy/z, -y * fy/z_2;H.block(i*6,i*6,6,6) += jacobian_Ti.transpose() * jacobian_Ti;//guan yu pose de Jacobian/// 请补充完整作业信息矩阵块的计算//zhu dui jiao xian 3*3
//            H.block(i * 6 + j * 3,i * 6 + j * 3,3,3) += jacobian_Pj.transpose() * jacobian_Pj; //mine
//            H.block(i * 6 ,i * 6 + j * 3,6,3) += jacobian_Ti.transpose() * jacobian_Pj;
//            H.block(i * 6 + j * 3, i * 6 ,3,6) += jacobian_Pj.transpose() * jacobian_Ti;//zheng que deH.block(poseNums * 6 + j * 3,poseNums * 6 + j * 3,3,3) += jacobian_Pj.transpose() * jacobian_Pj;H.block(i * 6 ,poseNums * 6 + j * 3,6,3) += jacobian_Ti.transpose() * jacobian_Pj;H.block(poseNums * 6 + j * 3, i * 6 ,3,6) += jacobian_Pj.transpose() * jacobian_Ti;}}//    std::cout << H << std::endl;
//    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes(H);
//    std::cout << saes.eigenvalues() <<std::endl;Eigen::JacobiSVD<Eigen::MatrixXd> svd(H, Eigen::ComputeThinU | Eigen::ComputeThinV);std::cout << svd.singularValues() <<std::endl;return 0;
}

最后的SVD分解还不是很熟,矩阵论忘差不多了。

这篇关于【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1795

相关文章

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后