【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业

本文主要是介绍【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 内容

在这里插入图片描述

T1.

参考SLAM14讲P247直接可写,注意 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2之间有约束(关系)。
在这里插入图片描述

套用舒尔补公式:
marg掉 ξ 1 \xi_1 ξ1之后,信息被传递到 L 1 和 L 2 L_1和L_2 L1L2之间了。
在这里插入图片描述

T2.

T3.

课上同学的作业分享:
在这里插入图片描述

在这里插入图片描述

算是勉强看着答案做出来了:
在这里插入图片描述
1.
在这里插入图片描述
我的维度不对 ,H的分布就是先pose,再路标点,所以先计算完pose的Jacobian才能计算landmark的Jacobian

那个Jacobian看不懂怎么算的。

在这里插入图片描述

  1. 整体代码
//
// Created by hyj on 18-11-11.
//
#include <iostream>
#include <vector>
#include <random>  
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Eigenvalues>struct Pose
{Pose(Eigen::Matrix3d R, Eigen::Vector3d t):Rwc(R),qwc(R),twc(t) {};Eigen::Matrix3d Rwc;Eigen::Quaterniond qwc;Eigen::Vector3d twc;
};
int main()
{int featureNums = 20;int poseNums = 10;int diem = poseNums * 6 + featureNums * 3;double fx = 1.;double fy = 1.;Eigen::MatrixXd H(diem,diem);H.setZero();std::vector<Pose> camera_pose;double radius = 8;for(int n = 0; n < poseNums; ++n ) {double theta = n * 2 * M_PI / ( poseNums * 4); // 1/4 圆弧// 绕 z轴 旋转Eigen::Matrix3d R;R = Eigen::AngleAxisd(theta, Eigen::Vector3d::UnitZ());Eigen::Vector3d t = Eigen::Vector3d(radius * cos(theta) - radius, radius * sin(theta), 1 * sin(2 * theta));camera_pose.push_back(Pose(R,t));}// 随机数生成三维特征点std::default_random_engine generator;std::vector<Eigen::Vector3d> points;for(int j = 0; j < featureNums; ++j){std::uniform_real_distribution<double> xy_rand(-4, 4.0);std::uniform_real_distribution<double> z_rand(8., 10.);double tx = xy_rand(generator);double ty = xy_rand(generator);double tz = z_rand(generator);Eigen::Vector3d Pw(tx, ty, tz);points.push_back(Pw);for (int i = 0; i < poseNums; ++i) {Eigen::Matrix3d Rcw = camera_pose[i].Rwc.transpose();Eigen::Vector3d Pc = Rcw * (Pw - camera_pose[i].twc);double x = Pc.x();double y = Pc.y();double z = Pc.z();double z_2 = z * z;Eigen::Matrix<double,2,3> jacobian_uv_Pc;// Jacobian of residual with respect to point in camera coordinatejacobian_uv_Pc<< fx/z, 0 , -x * fx/z_2,0, fy/z, -y * fy/z_2;Eigen::Matrix<double,2,3> jacobian_Pj = jacobian_uv_Pc * Rcw;Eigen::Matrix<double,2,6> jacobian_Ti;jacobian_Ti << -x* y * fx/z_2, (1+ x*x/z_2)*fx, -y/z*fx, fx/z, 0 , -x * fx/z_2,-(1+y*y/z_2)*fy, x*y/z_2 * fy, x/z * fy, 0,fy/z, -y * fy/z_2;H.block(i*6,i*6,6,6) += jacobian_Ti.transpose() * jacobian_Ti;//guan yu pose de Jacobian/// 请补充完整作业信息矩阵块的计算//zhu dui jiao xian 3*3
//            H.block(i * 6 + j * 3,i * 6 + j * 3,3,3) += jacobian_Pj.transpose() * jacobian_Pj; //mine
//            H.block(i * 6 ,i * 6 + j * 3,6,3) += jacobian_Ti.transpose() * jacobian_Pj;
//            H.block(i * 6 + j * 3, i * 6 ,3,6) += jacobian_Pj.transpose() * jacobian_Ti;//zheng que deH.block(poseNums * 6 + j * 3,poseNums * 6 + j * 3,3,3) += jacobian_Pj.transpose() * jacobian_Pj;H.block(i * 6 ,poseNums * 6 + j * 3,6,3) += jacobian_Ti.transpose() * jacobian_Pj;H.block(poseNums * 6 + j * 3, i * 6 ,3,6) += jacobian_Pj.transpose() * jacobian_Ti;}}//    std::cout << H << std::endl;
//    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes(H);
//    std::cout << saes.eigenvalues() <<std::endl;Eigen::JacobiSVD<Eigen::MatrixXd> svd(H, Eigen::ComputeThinU | Eigen::ComputeThinV);std::cout << svd.singularValues() <<std::endl;return 0;
}

最后的SVD分解还不是很熟,矩阵论忘差不多了。

这篇关于【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1795

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数