Python数据结构与算法-RAS算法(p96)

2023-10-10 09:10

本文主要是介绍Python数据结构与算法-RAS算法(p96),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RSA加密算法简介

1、加密算法概念

  • 传统密码: 加密算法是秘密的

  • 现代密码系统:加密算法是公开的,密钥是秘密的;(密钥可能是随机生成的,与他人不一致)

  • 对称加密—加密和解密用的同一个密钥

  • 非对称加密—加密和解密用的两个密钥,RSA算法属于非对称加密

2、RSA加密算法

  • RSA非对称加密系统:

  • 公钥:用来加密,是公开的 (一般用来加密)

  • 私钥:用来解密,是私有的 (个人用于解密)

  • 例如:

上图所示,Bob用公钥加密M文件,Bob传送给Alice。传送过程中,窃密者窃取M文件得到的加密后的信息,无法解读。Alice使用私钥解读M文件。

二、RSA算法的加密过程

1、RSA加密算法密钥获取过程

  • 随机选取两个质数p和q;

  • 计算n=pq

  • 选取一个与互质的小奇数e,=(p-1)(q-1)

  • 对模,计算e的乘法逆元d,即满足(e*d) mod = 1

  • 公钥(e,n) 私钥(d, n)

2、RSA加密算法密钥获取演示

(1)随机选取两个质数p和q;

质数是指约数只有1和本身的数。

质数越大,密码破解难度越大,实际中的质数是很大的。

>>> p = 53
>>> q = 59

(2)计算n=pq

>>> n = p*q
>>> n
3127

(3)选取一个与互质的小奇数e,=(p-1)(q-1)

互质是指最大公约数为1,奇数是与偶数相对的数,不能被2整除。

>>> fai = (p-1)*(q-1) #fai(n)
>>> fai
301
>>> e = 3

(4)对模,计算e的乘法逆元d,即满足(e*d) mod = 1

找到一个d,满足(e * d) mod = 1(可运用费马小定理,欧几里得算法求解)

>>> d = 2011 # 这里对应的d是2011,可用费马定理求解(具体求解可自行学习)
>>> (e * d) % fai
1

(5)公钥(e,n) 私钥(d, n)

>>> e
3
>>> n
3127
>>> d
2011

公钥:(3, 3127); 私钥(2011,3027)

3、加密解码过程

  • 加密过程: c=(m^e)mod n (公钥)

  • c:密文

  • m:明文

  • n^e: n的e次方,在python中是n ** e

  • 解密过程: m =(c^d)mod n (密钥)

(1)加密过程(终端运行)

>>> m = 87 # 明文
>>> c = (m ** e)%n # 加密
>>> c # 密文
1833

(2)解密过程(终端运行)

>>> (c ** d)%n
87 # 明文

三、RSA加密算法中求乘法逆元

1、乘法逆元定理

由于除法无法直接求模,转化为乘法再求模。

例如:

  • 普通除法下: 14 / 4 = 7 / 2 = 7 x 1/2 = ,将除法转化为乘法。

  • 在该式子下再取模就是模的除法:(14 / 4)mod 5 = (7 x 1/2) mod 5 =() mod 5

  • 乘法逆元类似与倒数的概念,两数相乘1,() mod 5 中取模的数一定为整数,所以1/2需要被整数替换。

  • 因为(2 * 3) mod 5 =1, 则2对与mod 5的乘法逆元为3。可以用3替换1/2

  • () mod 5 = (7 x 3) mod 5 =21 mod 5 = 1。理解为,7乘以“2的乘法逆元”模5。

乘法逆元定义:设aZ, nN, 如果az 1 (mod n) ,称z是模n下a的乘法逆元,记作

其中: a的乘法逆元是,z的乘法逆元

注意1:模n下互为乘法逆元,一般只考虑比n小的数。

注意2:a在模n内的乘法逆元)是唯一的。也可能就是本身。

注意3:乘法逆元存在条件:gcd(a,n) = 1(最大公约数) ,即模n下,a有乘法逆元。也就是说a 和n互质。

2、用扩展欧几里得算法求乘法逆元

(1)扩展欧几里得算法

给出正整数a和b,扩展的欧几里得算法可以计算a和b的最大公约数d,同时得到两个符号相反的整数x和y满足:d=gcd(a, b) = ax+by。

(2)根据扩展欧几里得算法求乘法逆元

az 1 (mod n) 求模的乘法逆元,又可以写成(a * z)mod n = 1,其中a和n互为质数,gcd(a,n)=1。

(可以得到a * z= y * n +1,这里的y是求解(a * z)mod n = 1中的系数。例如:(7 * 8)mod 11 =1,计算过程,7 * 8 = 5 * 11 + 1,这里的y是5。)

根据扩展欧几里得算法,即得到ax + by = gcd(a, b) = 1。整个求解的过程就是使用欧几里得算法gcd(a,b) = gcd(b, a mod b),求两个数的公约数,一直计算到1为止即可。例如:

  • a = 5,b = 14

14 % 5 =14 - 5 * 2 = 4

5 % 4 = 5 - 4 * 1 = 1 = gcd(a,b)

往回推算:4 = 14 - 5 * 2 替换

5 - (14 - 5* 2) = 1

5 - 14* 1+ 5* 2 =1

5*3 - 14*1 =1

此时x=3,y =1。但是y不是所求的。

则3 是 5 mod 14 的逆元。

  • 当由于式子是奇数个,所以最后整理时a的系数为负:

a =5, b = 18

18 % 5 = 18 - 5 * 3 = 3

5 % 3 = 5 - 3*1 = 2

3 % 2 = 3 - 2 * 1 =1

倒回去:

3-(5 - 3 * 1)=1

18 - 5 * 3 -(5 - 18 + 5 * 3)= 18 - 5 * 3 -5 * 4 + 18 = 18 * 2 - 5 * 7=1

转化为5*(-7)+ 18 * 2 = 1

利用两个数互质的性质以及最小公倍数,我们可以直接得到想要的结果:

5*(-7)+ 18 * 2 = 5 * (-7) mod 18 = 5 * (18-7)mod 18 = 5 * 11 mod 18 =1

最终x= 11.

(欧几里得算法求逆元的代码实现暂时略)

这篇关于Python数据结构与算法-RAS算法(p96)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179481

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal