Python数据结构与算法-RAS算法(p96)

2023-10-10 09:10

本文主要是介绍Python数据结构与算法-RAS算法(p96),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RSA加密算法简介

1、加密算法概念

  • 传统密码: 加密算法是秘密的

  • 现代密码系统:加密算法是公开的,密钥是秘密的;(密钥可能是随机生成的,与他人不一致)

  • 对称加密—加密和解密用的同一个密钥

  • 非对称加密—加密和解密用的两个密钥,RSA算法属于非对称加密

2、RSA加密算法

  • RSA非对称加密系统:

  • 公钥:用来加密,是公开的 (一般用来加密)

  • 私钥:用来解密,是私有的 (个人用于解密)

  • 例如:

上图所示,Bob用公钥加密M文件,Bob传送给Alice。传送过程中,窃密者窃取M文件得到的加密后的信息,无法解读。Alice使用私钥解读M文件。

二、RSA算法的加密过程

1、RSA加密算法密钥获取过程

  • 随机选取两个质数p和q;

  • 计算n=pq

  • 选取一个与互质的小奇数e,=(p-1)(q-1)

  • 对模,计算e的乘法逆元d,即满足(e*d) mod = 1

  • 公钥(e,n) 私钥(d, n)

2、RSA加密算法密钥获取演示

(1)随机选取两个质数p和q;

质数是指约数只有1和本身的数。

质数越大,密码破解难度越大,实际中的质数是很大的。

>>> p = 53
>>> q = 59

(2)计算n=pq

>>> n = p*q
>>> n
3127

(3)选取一个与互质的小奇数e,=(p-1)(q-1)

互质是指最大公约数为1,奇数是与偶数相对的数,不能被2整除。

>>> fai = (p-1)*(q-1) #fai(n)
>>> fai
301
>>> e = 3

(4)对模,计算e的乘法逆元d,即满足(e*d) mod = 1

找到一个d,满足(e * d) mod = 1(可运用费马小定理,欧几里得算法求解)

>>> d = 2011 # 这里对应的d是2011,可用费马定理求解(具体求解可自行学习)
>>> (e * d) % fai
1

(5)公钥(e,n) 私钥(d, n)

>>> e
3
>>> n
3127
>>> d
2011

公钥:(3, 3127); 私钥(2011,3027)

3、加密解码过程

  • 加密过程: c=(m^e)mod n (公钥)

  • c:密文

  • m:明文

  • n^e: n的e次方,在python中是n ** e

  • 解密过程: m =(c^d)mod n (密钥)

(1)加密过程(终端运行)

>>> m = 87 # 明文
>>> c = (m ** e)%n # 加密
>>> c # 密文
1833

(2)解密过程(终端运行)

>>> (c ** d)%n
87 # 明文

三、RSA加密算法中求乘法逆元

1、乘法逆元定理

由于除法无法直接求模,转化为乘法再求模。

例如:

  • 普通除法下: 14 / 4 = 7 / 2 = 7 x 1/2 = ,将除法转化为乘法。

  • 在该式子下再取模就是模的除法:(14 / 4)mod 5 = (7 x 1/2) mod 5 =() mod 5

  • 乘法逆元类似与倒数的概念,两数相乘1,() mod 5 中取模的数一定为整数,所以1/2需要被整数替换。

  • 因为(2 * 3) mod 5 =1, 则2对与mod 5的乘法逆元为3。可以用3替换1/2

  • () mod 5 = (7 x 3) mod 5 =21 mod 5 = 1。理解为,7乘以“2的乘法逆元”模5。

乘法逆元定义:设aZ, nN, 如果az 1 (mod n) ,称z是模n下a的乘法逆元,记作

其中: a的乘法逆元是,z的乘法逆元

注意1:模n下互为乘法逆元,一般只考虑比n小的数。

注意2:a在模n内的乘法逆元)是唯一的。也可能就是本身。

注意3:乘法逆元存在条件:gcd(a,n) = 1(最大公约数) ,即模n下,a有乘法逆元。也就是说a 和n互质。

2、用扩展欧几里得算法求乘法逆元

(1)扩展欧几里得算法

给出正整数a和b,扩展的欧几里得算法可以计算a和b的最大公约数d,同时得到两个符号相反的整数x和y满足:d=gcd(a, b) = ax+by。

(2)根据扩展欧几里得算法求乘法逆元

az 1 (mod n) 求模的乘法逆元,又可以写成(a * z)mod n = 1,其中a和n互为质数,gcd(a,n)=1。

(可以得到a * z= y * n +1,这里的y是求解(a * z)mod n = 1中的系数。例如:(7 * 8)mod 11 =1,计算过程,7 * 8 = 5 * 11 + 1,这里的y是5。)

根据扩展欧几里得算法,即得到ax + by = gcd(a, b) = 1。整个求解的过程就是使用欧几里得算法gcd(a,b) = gcd(b, a mod b),求两个数的公约数,一直计算到1为止即可。例如:

  • a = 5,b = 14

14 % 5 =14 - 5 * 2 = 4

5 % 4 = 5 - 4 * 1 = 1 = gcd(a,b)

往回推算:4 = 14 - 5 * 2 替换

5 - (14 - 5* 2) = 1

5 - 14* 1+ 5* 2 =1

5*3 - 14*1 =1

此时x=3,y =1。但是y不是所求的。

则3 是 5 mod 14 的逆元。

  • 当由于式子是奇数个,所以最后整理时a的系数为负:

a =5, b = 18

18 % 5 = 18 - 5 * 3 = 3

5 % 3 = 5 - 3*1 = 2

3 % 2 = 3 - 2 * 1 =1

倒回去:

3-(5 - 3 * 1)=1

18 - 5 * 3 -(5 - 18 + 5 * 3)= 18 - 5 * 3 -5 * 4 + 18 = 18 * 2 - 5 * 7=1

转化为5*(-7)+ 18 * 2 = 1

利用两个数互质的性质以及最小公倍数,我们可以直接得到想要的结果:

5*(-7)+ 18 * 2 = 5 * (-7) mod 18 = 5 * (18-7)mod 18 = 5 * 11 mod 18 =1

最终x= 11.

(欧几里得算法求逆元的代码实现暂时略)

这篇关于Python数据结构与算法-RAS算法(p96)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179481

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar