CLIP与DINOv2的图像相似度对比

2023-10-09 20:01
文章标签 图像 对比 clip 相似 dinov2

本文主要是介绍CLIP与DINOv2的图像相似度对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机视觉领域有两个主要的自监督模型:CLIP和DINOv2。CLIP彻底改变了图像理解并且成为图片和文字之间的桥梁,而DINOv2带来了一种新的自监督学习方法。

在本文中,我们将探讨CLIP和DINOv2的优势和它们直接微妙的差别。我们的目标是发现哪些模型在图像相似任务中真正表现出色。

CLIP

使用CLIP计算两幅图像之间的相似性是一个简单的过程,只需两步即可实现:提取两幅图像的特征,然后计算它们的余弦相似度。

我们先创建虚拟环境并安装包

 #Start by setting up a virtual environmentvirtualenv venv-similaritysource venv-similarity/bin/activate#Install required packagespip install transformers Pillow torch

接下来进行图像相似度的计算:

 import torchfrom PIL import Imagefrom transformers import AutoProcessor, CLIPModelimport torch.nn as nndevice = torch.device('cuda' if torch.cuda.is_available() else "cpu")processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)#Extract features from image1image1 = Image.open('img1.jpg')with torch.no_grad():inputs1 = processor(images=image1, return_tensors="pt").to(device)image_features1 = model.get_image_features(**inputs1)#Extract features from image2image2 = Image.open('img2.jpg')with torch.no_grad():inputs2 = processor(images=image2, return_tensors="pt").to(device)image_features2 = model.get_image_features(**inputs2)#Compute their cosine similarity and convert it into a score between 0 and 1cos = nn.CosineSimilarity(dim=0)sim = cos(image_features1[0],image_features2[0]).item()sim = (sim+1)/2print('Similarity:', sim)

上面两个相似的图像,获得的相似度得分达到了96.4%

DINOv2

使用DINOv2计算两幅图像之间的相似度的过程与CLIP的过程类似。使用DINOv2需要与前面提到的相同的软件包集,而不需要任何额外的安装:

 from transformers import AutoImageProcessor, AutoModelfrom PIL import Imageimport torch.nn as nndevice = torch.device('cuda' if torch.cuda.is_available() else "cpu")processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)image1 = Image.open('img1.jpg')with torch.no_grad():inputs1 = processor(images=image1, return_tensors="pt").to(device)outputs1 = model(**inputs1)image_features1 = outputs1.last_hidden_stateimage_features1 = image_features1.mean(dim=1)image2 = Image.open('img2.jpg')with torch.no_grad():inputs2 = processor(images=image2, return_tensors="pt").to(device)outputs2 = model(**inputs2)image_features2 = outputs2.last_hidden_stateimage_features2 = image_features2.mean(dim=1)cos = nn.CosineSimilarity(dim=0)sim = cos(image_features1[0],image_features2[0]).item()sim = (sim+1)/2print('Similarity:', sim)

上面CLIP示例中相同的图像对,DINOv2获得的相似性得分为93%。

两个模型都可以给出图像的相似性,下面我们来进行深入的研究。

使用COCO数据集进行测试

这里使用来自COCO数据集验证集的图像来比较CLIP和DINOv2产生的结果。

流程如下:

  • 遍历数据集以提取所有图像的特征。
  • 将嵌入存储在FAISS索引中。
  • 提取输入图像的特征。
  • 检索前三个相似的图像。

1、特征提取和创建索引

 import torchfrom PIL import Imagefrom transformers import AutoProcessor, CLIPModel, AutoImageProcessor, AutoModelimport faissimport osimport numpy as npdevice = torch.device('cuda' if torch.cuda.is_available() else "cpu")#Load CLIP model and processorprocessor_clip = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")model_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)#Load DINOv2 model and processorprocessor_dino = AutoImageProcessor.from_pretrained('facebook/dinov2-base')model_dino = AutoModel.from_pretrained('facebook/dinov2-base').to(device)#Retrieve all filenamesimages = []for root, dirs, files in os.walk('./val2017/'):for file in files:if file.endswith('jpg'):images.append(root  + '/'+ file)#Define a function that normalizes embeddings and add them to the indexdef add_vector_to_index(embedding, index):#convert embedding to numpyvector = embedding.detach().cpu().numpy()#Convert to float32 numpyvector = np.float32(vector)#Normalize vector: important to avoid wrong results when searchingfaiss.normalize_L2(vector)#Add to indexindex.add(vector)def extract_features_clip(image):with torch.no_grad():inputs = processor_clip(images=image, return_tensors="pt").to(device)image_features = model_clip.get_image_features(**inputs)return image_featuresdef extract_features_dino(image):with torch.no_grad():inputs = processor_dino(images=image, return_tensors="pt").to(device)outputs = model_dino(**inputs)image_features = outputs.last_hidden_statereturn image_features.mean(dim=1)#Create 2 indexes.index_clip = faiss.IndexFlatL2(512)index_dino = faiss.IndexFlatL2(768)#Iterate over the dataset to extract features X2 and store features in indexesfor image_path in images:img = Image.open(image_path).convert('RGB')clip_features = extract_features_clip(img)add_vector_to_index(clip_features,index_clip)dino_features = extract_features_dino(img)add_vector_to_index(dino_features,index_dino)#store the indexes locallyfaiss.write_index(index_clip,"clip.index")faiss.write_index(index_dino,"dino.index")

2、图像相似度搜索

 import faissimport numpy as npimport torchfrom transformers import AutoImageProcessor, AutoModel, AutoProcessor, CLIPModelfrom PIL import Imageimport os#Input imagesource='laptop.jpg'image = Image.open(source)device = torch.device('cuda' if torch.cuda.is_available() else "cpu")#Load model and processor DINOv2 and CLIPprocessor_clip = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")model_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)processor_dino = AutoImageProcessor.from_pretrained('facebook/dinov2-base')model_dino = AutoModel.from_pretrained('facebook/dinov2-base').to(device)#Extract features for CLIPwith torch.no_grad():inputs_clip = processor_clip(images=image, return_tensors="pt").to(device)image_features_clip = model_clip.get_image_features(**inputs_clip)#Extract features for DINOv2with torch.no_grad():inputs_dino = processor_dino(images=image, return_tensors="pt").to(device)outputs_dino = model_dino(**inputs_dino)image_features_dino = outputs_dino.last_hidden_stateimage_features_dino = image_features_dino.mean(dim=1)def normalizeL2(embeddings):vector = embeddings.detach().cpu().numpy()vector = np.float32(vector)faiss.normalize_L2(vector)return vectorimage_features_dino = normalizeL2(image_features_dino)image_features_clip = normalizeL2(image_features_clip)#Search the top 5 imagesindex_clip = faiss.read_index("clip.index")index_dino = faiss.read_index("dino.index")#Get distance and indexes of images associatedd_dino,i_dino = index_dino.search(image_features_dino,5)d_clip,i_clip = index_clip.search(image_features_clip,5)

3、结果

使用四种不同的图像作为输入,搜索产生了以下结果:

如果肉眼判断,DINOv2表现出稍好的性能。

使用DISC21数据集进行测试

为了量化CLIP和DINOv2的差别,我们选择了专门为图像相似性搜索创建的DISC21数据集。由于它的实际大小为350GB,我们将使用150,000个图像子集。

在参数方面,我们将计算:

  • 准确率:正确预测的图像与图像总数的比率。
  • top -3准确率:在前三幅相似图像中找到正确图像的次数占图像总数的比例。
  • 计算时间:处理整个数据集所需的时间。

结果如下:

特征提取:CLIP:每秒70.7个图像,DINOv2:每秒69.7个图像,2者的计算密集度都差不多。

准确率和前三名的准确率

两种模型都正确地预测了图像

所有模型都找不到正确的图像

只有CLIP预测正确的图像,DINOv2的top3

只有DINOv2预测正确的图像

结果分析

DINOv2明显的胜出,他在这个个非常具有挑战性的数据集上实现了64%的准确率。相比之下,CLIP只有28.45%。

在计算效率方面两种模型表现出非常相似的特征提取时间。

这里DINOv2大幅领先的一个原因是MetaAI使用DISC21数据集作为其模型的基准,这肯定会给DINOv2带来有利的优势。但是我们可以看到在COCO数据集上的测试中显示了有趣的细微差别:DINOv2在识别图像中的主要元素方面表现出更高的能力,而CLIP在专注于输入图像中的特定细节方面表现得很熟练(看看 bus那个图像,CLIP找出的全部是红色的车,这可能是因为它与文本对齐时包含了颜色)

还有一个问题就是CLIP和DINOv2之间嵌入维数的差异。CLIP的嵌入维数为512,而DINOv2的嵌入维数为768。所以可能也是差异的原因,但是如果使用更大的CLIP模型,执行的速度应该不会这么快了。

总结

DINOv2在图像相似任务中表现出卓越的准确性,展示了其实际应用的潜力。CLIP虽然值得称赞,但相比之下就显得不足了。CLIP在需要关注小细节的场景中特别有用。两种模型都表现出相似的计算效率,如果只针对于图像的单模态,DINOv2应该是一个不错的选择。

https://avoid.overfit.cn/post/bed7816b98f6487a9ed88a52f32f8dcd

作者:JeremyK

这篇关于CLIP与DINOv2的图像相似度对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175237

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB