NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道

本文主要是介绍NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        我的NLP项目在维基百科条目上下载、处理和应用机器学习算法。相关上一篇文章中,展示了项目大纲,并建立了它的基础。首先,一个 Wikipedia 爬网程序对象,它按名称搜索文章,提取标题、类别、内容和相关页面,并将文章存储为纯文本文件。其次,一个语料库对象,它处理完整的文章集,允许方便地访问单个文件,并提供全局数据,如单个令牌的数量。

二、背景介绍

        在本文中,我将继续展示如何创建一个NLP项目,以从其机器学习领域对不同的维基百科文章进行分类。你将了解如何创建自定义 SciKit Learn 管道,该管道使用 NLTK 进行标记化、词干提取和矢量化,然后应用贝叶斯模型来应用分类。所有代码也可以在Jupyter Notebook中看到。

        本文的技术背景是 Python v3.11 和几个附加库,最重要的是 pandas v2.0.1、scikit-learn v1.2.2 和 nltk v3.8.1。所有示例也应该适用于较新的版本。

2.1 需求和使用的 Python 库

        请务必阅读并运行上一篇文章的要求,以便有一个 Jupyter 笔记本来运行所有代码示例。

        对于本文,需要以下库:这些步骤中的每一个都将成为管道对象的一部分,管道对象是读取、预处理、矢量化和聚类文本的顺序过程。我们将在此项目中使用以下 Python 库和对象:

pandas

  • DataFrame用于存储文本、标记和矢量的对象

sk-learn

  • Pipeline对象实现处理步骤链
  • BaseEstimator并生成表示管道步骤的自定义类TransformerMixin

NLTK

  • PlaintextCorpusReader 用于可遍历对象,可访问文档、提供标记化方法并计算有关所有文件的统计信息
  • sent_tokenizer 和 word_tokenizer 用于生成令牌
  • 减少标记的stopword列表

2.2 SciKit Learn Pipeline

        为了便于获得一致的结果和轻松定制,SciKit Learn 提供了 Pipeline 对象。该对象是一系列转换器、实现拟合fittransform变换方法的对象以及实现拟合fit方法的最终估计器。执行管道对象意味着调用每个转换器来修改数据,然后将最终的估计器(机器学习算法)应用于此数据。管道对象公开其参数,以便可以更改超参数,甚至可以跳过整个管道步骤。

         我们将使用此概念来构建一个管道,该管道开始创建语料库对象,然后预处理文本,然后提供矢量化,最后提供聚类或分类算法。为了突出本文的范围,我将在下一篇文章中仅解释转换器步骤,并接近聚类和分类。

三、管道准备

        让我们从大局开始。最终的管道对象将按如下方式实现:

pipeline = Pipeline([('corpus', WikipediaCorpus()),('preprocess', TextPreprocessor()),('tokenizer', Tokenizer()),('encoder', OneHotEncoder())
])

        然后,此管道从一个空的 Pandas 数据帧对象开始,随后将数据添加到该对象,即我们实现如下所示的数据帧对象:

        对于上述每个步骤,我们将使用自定义类,该类从推荐的 ScitKit Learn 基类继承方法。

from sklearn.base import BaseEstimator, TransformerMixin
from nltk.tokenize import sent_tokenize, word_tokenizeclass SciKitTransformer(BaseEstimator, TransformerMixin):def fit(self, X=None, y=None):return selfdef transform(self, X=None):return self

让我们开始实现。

3.1 管道步骤 1:创建语料库

        第一步是重用上一篇文章中解释的 Wikipedia 语料库对象,并将其包装在基类中,并提供两个 DataFrame 列 title 和 raw。在标题列中,我们存储除 .txt 扩展名之外的文件名。在原始列中,我们存储文件的完整内容。

        此转换使用列表推导式和 NLTK 语料库读取器的内置方法。

class WikipediaCorpus(PlaintextCorpusReader):def __init__(self, root_path):PlaintextCorpusReader.__init__(self, root_path, r'.*')class WikipediaCorpus(SciKitTransformer):def __init__(self, root_path=''):self.root_path = root_pathself.corpus = WikipediaReader(self.root_path)def transform(self, X=None):X = pd.DataFrame().from_dict({'title': [filename.replace('.txt', '') for filename in self.corpus.fileids()],'raw': [self.corpus.raw(doc) for doc in corpus.fileids()]})return X

3.2 管道步骤 2:文本预处理

        在 NLP 应用程序中,通常会检查原始文本中不需要的符号,或者可以删除的停用词,甚至应用词干提取和词形还原。

        对于维基百科的文章,我决定将文本分成句子和标记,而不是标记转换,最后将它们重新组合在一起。转换如下:

  • 删除所有停用词
  • 删除所有非ASCII字母,非数字标记
  • 仅保留 .,以及用于序列分隔,;.
  • 使用单个空格删除所有出现的多个空格

        这是 TextPreprocessor 的完整实现。 DataFrame 对象使用 Pandas apply 方法预处理的新列进行扩展。 

class TextPreprocessor(SciKitTransformer):def __init__(self, root_path=''):self.root_path = root_pathself.corpus = WikipediaReader(self.root_path)self.tokenizer = word_tokenizedef preprocess(self, text):preprocessed = ''for sent in sent_tokenize(text):if not len(sent) <= 3:text = ' '.join([word for word in word_tokenize(sent) if not word in stopwords.words("english")])text = re.sub('[^A-Za-z0-9,;\.]+', ' ', text)text = re.sub(r'\s+', ' ', text)# preserve text tokenstext = re.sub(r'\s\.', '.', text)text = re.sub(r'\s,', ',', text)text = re.sub(r'\s;', ';', text)# remove all non character, non number charspreprocessed += ' '+ text.strip()return preprocesseddef transform(self, X):X['preprocessed'] = X['raw'].apply(lambda text: self.preprocess(text))return X

3.3 管道步骤 3-标记化

        现在,使用与之前相同的 NLT word_tokenizer 对预处理后的文本进行再次标记化,但可以使用不同的标记化器实现进行交换。

        和以前一样,通过在预处理列上使用 apply 来扩展 DataFrame,添加一个新列 tokens。

class TextTokenizer(SciKitTransformer):def preprocess(self, text):return [token.lower() for token in word_tokenize(text)]def transform(self, X):X['tokens'] = X['preprocessed'].apply(lambda text: self.preprocess(text))return X

3.4 管道步骤 4:编码器

        对标记化文本进行编码是矢量化的先导。为了使本文保持重点,我将提供一种相当简单的编码方法,该方法计算所有文本的完整词汇表,并对特定文章中出现的所有单词进行独热编码。词汇表的基础是错误的:我使用精炼标记列表作为输入,但也可以使用NLTK-CorpusReader对象中的vocab方法。

class OneHotEncoder(SciKitTransformer):def encode(self, token_series, tokens):one_hot = {}for _, token_list in token_series.items():for token in token_list:one_hot[token] = 0for token in tokens:one_hot[token] = 1return one_hotdef transform(self, X):token_list = X['tokens']X['one-hot-encoding'] = X['tokens'].apply(lambda tokens: self.encode(token_list, tokens))return X

        这种编码非常昂贵,因为每次运行的完整词汇表都是从头开始构建的——这可以在未来的版本中改进。

四、完整的源代码

        以下是完整的示例:

import numpy as np
import pandas as pdfrom nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
from  nltk.corpus.reader.plaintext import CategorizedPlaintextCorpusReader
from nltk.tokenize.stanford import StanfordTokenizerclass WikipediaPlaintextCorpus(PlaintextCorpusReader):def __init__(self, root_path):PlaintextCorpusReader.__init__(self, root_path, r'.*')class SciKitTransformer(BaseEstimator, TransformerMixin):def fit(self, X=None, y=None):return selfdef transform(self, X=None):return selfclass WikipediaCorpus(SciKitTransformer):def __init__(self, root_path=''):self.root_path = root_pathself.wiki_corpus = WikipediaPlaintextCorpus(self.root_path)def transform(self, X=None):X = pd.DataFrame().from_dict({'title': [filename.replace('.txt', '') for filename in self.wiki_corpus.fileids()],'raw': [self.wiki_corpus.raw(doc) for doc in corpus.fileids()]})return Xclass TextPreprocessor(SciKitTransformer):def __init__(self, root_path=''):self.root_path = root_pathself.corpus = WikipediaPlaintextCorpus(self.root_path)def preprocess(self, text):preprocessed = ''for sent in sent_tokenize(text):text = ' '.join([word for word in word_tokenize(sent) if not word in stopwords.words("english")])text = re.sub('[^A-Za-z0-9,;\.]+', ' ', text)text = re.sub(r'\s+', ' ', text)# preserve text tokenstext = re.sub(r'\s\.', '.', text)text = re.sub(r'\s,', ',', text)text = re.sub(r'\s;', ';', text)# remove all non character, non number charspreprocessed += ' '+ text.strip()return preprocesseddef transform(self, X):X['preprocessed'] = X['raw'].apply(lambda text: self.preprocess(text))return Xclass TextTokenizer(SciKitTransformer):def preprocess(self, text):return [token.lower() for token in word_tokenize(text)]def transform(self, X):X['tokens'] = X['preprocessed'].apply(lambda text: self.preprocess(text))return Xclass OneHotEncoder(SciKitTransformer):def encode(self, token_series, tokens):one_hot = {}for _, token_list in token_series.items():for token in token_list:one_hot[token] = 0for token in tokens:one_hot[token] = 1return one_hotdef transform(self, X):token_list = X['tokens']X['one-hot-encoding'] = X['tokens'].apply(lambda tokens: self.encode(token_list, tokens))return Xcorpus = WikipediaPlaintextCorpus('articles2')
pipeline = Pipeline([('corpus', WikipediaCorpus(root_path='./articles2')),('preprocess', TextPreprocessor(root_path='./articles2')),('tokenizer', TextTokenizer()),('encoder', OneHotEncoder())
])

管道对象在 Jupyter 笔记本中呈现如下:

五、结论       

        SciKit Learn Pipeline 对象提供了一种将多个转换和机器学习模型堆叠在一起的便捷方法。所有相关的超参数都可以公开并配置以获得可重复的结果。在本文中,您学习了如何通过四个步骤为 Wikipedia 文章创建文本处理管道:a) WikipediaCorpus 用于访问纯文本文件和全局统计信息(例如单词出现次数),b) TextPreprocessor 用于从文本中删除符号和停用词,c) TextTokenizer从预处理的文本创建标记,d) OneHotEncoder 提供简单的统计,总语料库词汇中的单词出现在特定文章中。下一篇文章将继续如何将标记和编码转换为数值向量表示。

参考资料:塞巴斯蒂安

自然语言处理
Nltk

这篇关于NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172835

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结