语音识别-置信度

2023-10-09 09:20
文章标签 语音 识别 置信度

本文主要是介绍语音识别-置信度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.CONFIDENCE ESTIMATION FOR ATTENTION-BASED SEQUENCE-TO-SEQUENCE MODELS FOR SPEECH RECOGNITION : https://arxiv.org/pdf/2010.11428.pdf

1.引言
1).置信度的目的:
在半监督学习和主动学习中,选择较高置信度的数据来进一步提高ASR性能;
利用较低的置信度分数进行筛选模糊的数据,然后通过人工确认来减少错误;
2).置信度的方法:
在传统的基于hmm的系统中,通过从假设compact空间中计算单词的后x验概率,可以很容易地获得可靠的置信分数,egs:lattice, confusion networks;
解释语音识别中的lattice与confusion network_lattice语音识别(https://blog.csdn.net/yutianzuijin/article/details/77621511),相比于lattice,我们可以很容易从混淆网络中获取one best结果,只需要从每一段中选择后验概率最大的边即可。混淆网络作为lattice的简化版,会引入原始lattice中不存在的路径。但是通常情况下,用混淆网络获取的one best结果要好于原始的one best。混淆网络还有一个好处,我们可以很容易获取每个时刻相互竞争的词有哪些。
基于神经网络构建置信度模型;

3).存在问题:

目前端到端模型语音识别模型成为主流,但在端到端语音识别中,在不使用特定解码器架构情况下,是不能生成像lattice一样的compact 空间;因此,在端到端假设空间中计算词后验变得非常复杂。一般简单的方法:使用贪婪近似将解码器每一步的softmax最大概率作为每个令牌的置信分数;但是,软最大概率估计置信度估计质量可能非常差。
在这里插入图片描述
随着置信阈值的增加,常规系统的WER单调地减小。然而,对于端到端模型,较高的阈值(置信度)并不总是意味着WER的降低,可以看出模型是overconfident。
4).解决问题

针对模型过度自信问题,提出了基于注意的序列到序列模型的置信估计模块(CEM)
2.CEM模型介绍
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
细化问题:

1.在token级别的上,asr的置信度分数被定义token正确的概率,如果识别器对输出token非常自信,那么相应的置信度分数应该接近于1。

2.Word或话语平均置信分数可以通过取一个单词或一个话语中的平均值来获得。

3.对于基于注意力的序列到序列模型,自回归解码器中的每一步都被视为对所有可能的输出token的分类任务。然而,在(softmax)标准化分类和序列置信度分数之间存在细微的差异。解码器的自回归性质和使用teacher-forece 方法进行训练,对具有错误历史的序列的校准行为是不确定的。此外,当模型为了追求最先优的性能而变得非常深和大时,模型可能会很难被纠正。

4.基于此提出了CEM模型,目的是让模型的softmax输出和增加一个FC层Pt输出,来共同决策句子级别的置信度。

5.训练过程:在有监督预训练过attention-asr model基础下,即固定asr模型参数,主要进行训练FC层。

6.loss计算:模型预测结果是Pt(置信度分数,范围0~1),然后通过Pt和Ct (0/1)计算二进制交叉熵。

3.CEM模型评估
在这里插入图片描述

(1)评估指标是NCE,主要与H(c)=-Σ c * log©, H(c, p)相关,H(c, p)< 0 和loss的计算方式是相同的;当置信度估计效果比单词正确率好时候,NCE为正。对于完美的分数,NCE是等于1。说明NCE主要用来衡量置信度得分与识别单词正确率的接近程度。

在这里插入图片描述

(2)但是,我们使用置信度时候,通常去设置一个阈值P~来进行筛选正确的和不正确的,因此制定了三个指标precision和recall,AUC。通常情况下,当阈值p˜增加时,假正例更少,假负例更多,这导致准确率更高,召回率更低。精确度和召回率之间的权衡行为产生了一条从左上角到右下角的向下趋势曲线。因此,曲线下面积(AUC)可以测量置信度估计量的质量,其最大值为1。值得注意的是,两个置信度估计模型可以有相同的AUC值,但NCE值不同。

3.2.数据:LibriSpeech数据集,测试集test-clean/test-other

4.实验
4.1 正则化方法对置信度得分的影响
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
然而,AUC值并没有显示出【过度自信】这个情况。如图3所示,softmax和CEM的P-R曲线有很大差异。在图3(a)中,高置信区域急剧下降的峰值对应于低精度和低查全率。换句话说,对于一些不正确的标记,softmax概率是过度自信,这也解释了图1中所示的峰值。然而,CEM几乎没有过度自信的影响,图3(b)描述了精确度和召回率之间的权衡。总的来说,CEM在这两个指标下都是一个更可靠的置信度估计模型。

在这里插入图片描述

这篇关于语音识别-置信度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171858

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图