深度学习经典网络实现与分析 —— VGGNet

2023-10-09 04:59

本文主要是介绍深度学习经典网络实现与分析 —— VGGNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码地址
https://github.com/xmy0916/DLNetwork

简介

参考:https://blog.csdn.net/weixin_42546496/article/details/87915453
VGGNet论文给出了一个非常振奋人心的结论:卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用。
VGGNet由牛津大学的视觉几何组(Visual Geometry Group)和 Google DeepMind公司的研究员一起研发的的深度卷积神经网络,在 ILSVRC 2014 上取得了第二名的成绩,将 Top-5错误率降到7.3%。目前使用比较多的网络结构主要有ResNet(152-1000层),GooleNet(22层),VGGNet(19层),大多数模型都是基于这几个模型上改进,采用新的优化算法,多模型融合等。到目前为止,VGG Net 依然经常被用来提取图像特征。

重点

  • 使用更多小size的卷积核。
  • 使用简单网络训练好的参数初始化复杂网络。
  • 采用了Multi-Scale的方法来训练和预测。

更多小size的卷积核

AlexNet中使用的卷积核有11 * 11、5 * 5 、3 * 3的大小。在VGGNet中每层卷积层中包含2~4个卷积操作,卷积核的大小是3 *3 ,卷积步长是1,池化核是2 * 2,步长为2,。VGGNet最明显的改进就是降低了卷积核的尺寸,增加了卷积的层数。
2个3x3卷积堆叠等于1个5x5卷积,3个3x3堆叠等于1个7x7卷积,感受野大小不变,而采用更多层、更小的卷积核可以引入更多非线性(更多的隐藏层,从而带来更多非线性函数),提高决策函数判决力,并且带来更少参数。
在这里插入图片描述

使用简单网络训练好的参数初始化复杂网络

训练时,先训练级别简单(层数较浅)的VGGNet的A级网络,然后使用A网络的权重来初始化后面的复杂模型,加快训练的收敛速度。
在这里插入图片描述

Multi-Scale

首先对原始图片进行等比例缩放,使得短边要大于224,然后在图片上随机提取224x224窗口,进行训练。由于物体尺度变化多样,所以多尺度(Multi-scale)可以更好地识别物体。

  • 方法1:在不同的尺度下,训练多个分类器:
    参数S为短边长。训练S=256和S=384两个分类器,其中S=384的分类器用S=256的进行初始化,且将步长调为10e-3
  • 方法2:直接训练一个分类器,每次数据输入的时候,每张图片被重新缩放,缩放的短边S随机从[256,512]中选择一个。
    Multi-scale其实本身不是一个新概念,学过图像处理的同学都知道,图像处理中已经有这个概念了,我们学过图像金字塔,那就是一种多分辨率操作。

只不过VGG网络第一次在神经网络的训练过程中提出也要来搞多尺寸。目的是为了提取更多的特征信息。像后来做分割的网络如DeepLab也采用了图像金字塔的操作。

注: 因为训练数据的输入为224x224,从而图像的最小边S,不应该小于224

在训练中,VGGNet还使用了Multi-Scale的方法做数据增强,将原始图像缩放到不同尺寸S,然后再随机裁切224*224的图片,这样能增加很多数据量,对于防止模型过拟合有很不错的效果。

实践中,作者令S在[256,512]这个区间内取值,比固定的S=256与S=512的结果显著提升,使用Multi-Scale获得多个版本的数据,并将多个版本的数据合在一起进行训练。

multi-scale训练确实很有用,因为卷积网络对于缩放有一定的不变性,通过multi-scale训练可以增加这种不变性的能力。
参考:https://blog.csdn.net/weixin_42535423/article/details/103700277

结构

在这里插入图片描述
在这里插入图片描述

代码

实现参考pytorch官方vgg代码:https://github.com/pytorch/vision/tree/master/torchvision/models
项目地址:
https://github.com/xmy0916/DLNetwork

class VGG(nn.Module):def __init__(self,features: nn.Module,num_classes: int = 1000,init_weights: bool = True) -> None:super(VGG, self).__init__()self.features = featuresself.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, num_classes),)if init_weights:self._initialize_weights()def forward(self, x: torch.Tensor) -> torch.Tensor:x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return xdef _initialize_weights(self) -> None:for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)

运行命令:

python3 train.py --model vggnet

配置文件如下:

"vggnet": {"model": VggNet,"name": "vgg16","pretrained": True,"epoch": 5,"num_class": 10,"save_path": "params/vgg.pth","input_size": (112, 112),  # 224跑不动..."batch_size": (8, 1000),"lr": 0.0001}

name参数一共支持:

list = [
'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19']

注意一点论文的inputsize是224,224这个跑起来服务器12G的显存就爆了,改了112可以跑动

这篇关于深度学习经典网络实现与分析 —— VGGNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170521

相关文章

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

Go中select多路复用的实现示例

《Go中select多路复用的实现示例》Go的select用于多通道通信,实现多路复用,支持随机选择、超时控制及非阻塞操作,建议合理使用以避免协程泄漏和死循环,感兴趣的可以了解一下... 目录一、什么是select基本语法:二、select 使用示例示例1:监听多个通道输入三、select的特性四、使用se

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

详解Java中三种状态机实现方式来优雅消灭 if-else 嵌套

《详解Java中三种状态机实现方式来优雅消灭if-else嵌套》这篇文章主要为大家详细介绍了Java中三种状态机实现方式从而优雅消灭if-else嵌套,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录1. 前言2. 复现传统if-else实现的业务场景问题3. 用状态机模式改造3.1 定义状态接口3

基于Python实现温度单位转换器(新手版)

《基于Python实现温度单位转换器(新手版)》这篇文章主要为大家详细介绍了如何基于Python实现温度单位转换器,主要是将摄氏温度(C)和华氏温度(F)相互转换,下面小编就来和大家简单介绍一下吧... 目录为什么选择温度转换器作为第一个项目项目概述所需基础知识实现步骤详解1. 温度转换公式2. 用户输入处

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制

SpringBoot集成P6Spy的实现示例

《SpringBoot集成P6Spy的实现示例》本文主要介绍了SpringBoot集成P6Spy的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录本节目标P6Spy简介抛出问题集成P6Spy1. SpringBoot三板斧之加入依赖2. 修改