3.数据湖deltalake之时间旅行及版本管理

2023-10-09 02:08

本文主要是介绍3.数据湖deltalake之时间旅行及版本管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浪尖在deltalake第一讲的时候说过,它支持数据版本管理和时间旅行:提供了数据快照,使开发人员能够访问和还原早期版本的数据以进行审核、回滚或重新计算。

1.场景

delta lake的时间旅行,实际上就是利用多版本管理机制,查询历史的delta 表快照。时间旅行有以下使用案例:

1).可以重复创建数据分析,报告或者一些输出(比如,机器学习模型)。这主要是有利于调试和安全审查,尤其是在受管制的行业里。

2).编写复杂的基于时间的查询。

3).修正数据中的错误信息。

4).为一组查询提供快照隔离,以快速变更表。

2.配置

DataframeTable支持创建dataframe的时候指定一个delta lake表的版本信息:

val df1 = spark.read.format("delta").option("timestampAsOf", timestamp_string).load("/delta/events")val df2 = spark.read.format("delta").option("versionAsOf", version).load("/delta/events")

对于版本号,直接传入一个版本数值即可,如下:

val df2 = spark.read.format("delta").option("versionAsOf", 0).table(tableName)

对于timestamp字符串,必须要是date格式或者timestamp格式。例如:

val df1 = spark.read.format("delta").option("timestampAsOf", "2020-06-28").load("/delta/events")val df1 = spark.read.format("delta").option("timestampAsOf", "2020-06-28T00:00:00.000Z").load("/delta/events")

由于delta lake的表是存在更新的情况,所以多次读取数据生成的dataframe之间会有差异,因为两次读取数据可能是一次是数据更新前,另一次是数据更新后。使用时间旅行你就可以在多次调用之间修复数据。

val latest_version = spark.sql("SELECT max(version) FROM (DESCRIBE HISTORY delta.`/delta/events`)").collect()val df = spark.read.format("delta").option("versionAsOf", latest_version[0][0]).load("/delta/events")

3.数据保存时间

默认情况下,deltalake保存最近30天的提交历史。这就意味着可以指定30天之前的版本来读取数据,但是有些注意事项:

3.1 没对delta 表调用VACUUM函数。VACUUM函数是用来删除不在引用的delta表和一些超过保留时间的表,支持sql和API形式。

slq表达式:

VACUUM eventsTable   -- vacuum files not required by versions older than the default retention periodVACUUM '/data/events' -- vacuum files in path-based tableVACUUM delta.`/data/events/`VACUUM delta.`/data/events/` RETAIN 100 HOURS  -- vacuum files not required by versions more than 100 hours oldVACUUM eventsTable DRY RUN    -- do dry run to get the list of files to be deleted

scala API 表达式

import io.delta.tables._val deltaTable = DeltaTable.forPath(spark, pathToTable)deltaTable.vacuum()        // vacuum files not required by versions older than the default retention perioddeltaTable.vacuum(100)     // vacuum files not required by versions more than 100 hours old

可以通过下面两个delta 表属性配置来

  • delta.logRetentionDuration =“ interval <interval>”:控制将表的历史记录保留多长时间。每次写入checkpoint时,都会自动清除早于保留间隔的日志。如果将此配置设置为足够大的值,则会保留许多日志。这不会影响性能,因为针对日志的操作是常量时间。历史记录的操作是并行的(但是随着日志大小的增加,它将变得更加耗时)。默认值为 interval 30 days。

  • delta.deletedFileRetentionDuration =“ interval <interval>”:在这个时间范围内的数据是不会被VACUUM命令删除。默认值为间隔7天。要访问30天的历史数据,请设置delta.deletedFileRetentionDuration = "interval 30 days"。此设置可能会导致您的存储成本上升。

注意:VACUUM命令是不会删除日志文件的,日志文件是在checkpoint之后自动删除的。

为了读取之前版本的数据,必须要保留该版本的日志文件和数据文件。

4.案例

修复意外删除的用户111的数据。

INSERT INTO my_table  SELECT * FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)  WHERE userId = 111

修复错误更新的数据

MERGE INTO my_table target  USING my_table TIMESTAMP AS OF date_sub(current_date(), 1) source  ON source.userId = target.userId  WHEN MATCHED THEN UPDATE SET *

查询过去七天新增的消费者数:

  SELECT count(distinct userId)  FROM my_table TIMESTAMP AS OF date_sub(current_date(), 7))

推荐阅读:

1.数据湖deltalake初识

2.数据湖DeltaLake之DDL操作

这篇关于3.数据湖deltalake之时间旅行及版本管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169577

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处