3.数据湖deltalake之时间旅行及版本管理

2023-10-09 02:08

本文主要是介绍3.数据湖deltalake之时间旅行及版本管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浪尖在deltalake第一讲的时候说过,它支持数据版本管理和时间旅行:提供了数据快照,使开发人员能够访问和还原早期版本的数据以进行审核、回滚或重新计算。

1.场景

delta lake的时间旅行,实际上就是利用多版本管理机制,查询历史的delta 表快照。时间旅行有以下使用案例:

1).可以重复创建数据分析,报告或者一些输出(比如,机器学习模型)。这主要是有利于调试和安全审查,尤其是在受管制的行业里。

2).编写复杂的基于时间的查询。

3).修正数据中的错误信息。

4).为一组查询提供快照隔离,以快速变更表。

2.配置

DataframeTable支持创建dataframe的时候指定一个delta lake表的版本信息:

val df1 = spark.read.format("delta").option("timestampAsOf", timestamp_string).load("/delta/events")val df2 = spark.read.format("delta").option("versionAsOf", version).load("/delta/events")

对于版本号,直接传入一个版本数值即可,如下:

val df2 = spark.read.format("delta").option("versionAsOf", 0).table(tableName)

对于timestamp字符串,必须要是date格式或者timestamp格式。例如:

val df1 = spark.read.format("delta").option("timestampAsOf", "2020-06-28").load("/delta/events")val df1 = spark.read.format("delta").option("timestampAsOf", "2020-06-28T00:00:00.000Z").load("/delta/events")

由于delta lake的表是存在更新的情况,所以多次读取数据生成的dataframe之间会有差异,因为两次读取数据可能是一次是数据更新前,另一次是数据更新后。使用时间旅行你就可以在多次调用之间修复数据。

val latest_version = spark.sql("SELECT max(version) FROM (DESCRIBE HISTORY delta.`/delta/events`)").collect()val df = spark.read.format("delta").option("versionAsOf", latest_version[0][0]).load("/delta/events")

3.数据保存时间

默认情况下,deltalake保存最近30天的提交历史。这就意味着可以指定30天之前的版本来读取数据,但是有些注意事项:

3.1 没对delta 表调用VACUUM函数。VACUUM函数是用来删除不在引用的delta表和一些超过保留时间的表,支持sql和API形式。

slq表达式:

VACUUM eventsTable   -- vacuum files not required by versions older than the default retention periodVACUUM '/data/events' -- vacuum files in path-based tableVACUUM delta.`/data/events/`VACUUM delta.`/data/events/` RETAIN 100 HOURS  -- vacuum files not required by versions more than 100 hours oldVACUUM eventsTable DRY RUN    -- do dry run to get the list of files to be deleted

scala API 表达式

import io.delta.tables._val deltaTable = DeltaTable.forPath(spark, pathToTable)deltaTable.vacuum()        // vacuum files not required by versions older than the default retention perioddeltaTable.vacuum(100)     // vacuum files not required by versions more than 100 hours old

可以通过下面两个delta 表属性配置来

  • delta.logRetentionDuration =“ interval <interval>”:控制将表的历史记录保留多长时间。每次写入checkpoint时,都会自动清除早于保留间隔的日志。如果将此配置设置为足够大的值,则会保留许多日志。这不会影响性能,因为针对日志的操作是常量时间。历史记录的操作是并行的(但是随着日志大小的增加,它将变得更加耗时)。默认值为 interval 30 days。

  • delta.deletedFileRetentionDuration =“ interval <interval>”:在这个时间范围内的数据是不会被VACUUM命令删除。默认值为间隔7天。要访问30天的历史数据,请设置delta.deletedFileRetentionDuration = "interval 30 days"。此设置可能会导致您的存储成本上升。

注意:VACUUM命令是不会删除日志文件的,日志文件是在checkpoint之后自动删除的。

为了读取之前版本的数据,必须要保留该版本的日志文件和数据文件。

4.案例

修复意外删除的用户111的数据。

INSERT INTO my_table  SELECT * FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)  WHERE userId = 111

修复错误更新的数据

MERGE INTO my_table target  USING my_table TIMESTAMP AS OF date_sub(current_date(), 1) source  ON source.userId = target.userId  WHEN MATCHED THEN UPDATE SET *

查询过去七天新增的消费者数:

  SELECT count(distinct userId)  FROM my_table TIMESTAMP AS OF date_sub(current_date(), 7))

推荐阅读:

1.数据湖deltalake初识

2.数据湖DeltaLake之DDL操作

这篇关于3.数据湖deltalake之时间旅行及版本管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169577

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE