手把手教你用Python网络爬虫爬取新房数据

2023-10-08 23:50

本文主要是介绍手把手教你用Python网络爬虫爬取新房数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

击上方“Python爬虫与数据挖掘”,进行关注

回复“书籍”即可获赠Python从入门到进阶共10本电子书

念天地之悠悠,独怆然而涕下。

项目背景

大家好,我是J哥。

新房数据,对于房地产置业者来说是买房的重要参考依据,对于房地产开发商来说,也是分析竞争对手项目的绝佳途径,对于房地产代理来说,是踩盘前的重要准备。

今天J哥以「惠民之家」为例,手把手教你利用Python将惠州市新房数据批量抓取下来,共采集到近千个楼盘,包含楼盘名称、销售价格、主力户型、开盘时间、容积率、绿化率等「41个字段」。数据预览如下:

后台回复「新房」二字,可领取本文代码。

项目目标

惠民之家首页网址:

http://www.fz0752.com/

新房列表网址:

http://www.fz0752.com/project/list.shtml

选择一个新房并点击「详情信息」即可找到目标字段:

项目准备

软件:Pycharm

第三方库:requests,fake_useragent,lxml

网站地址:http://www.fz0752.com/

网页分析

列表页分析

打开新房列表网页,点击「下一页」后,网址变成:

http://www.fz0752.com/project/list.shtml?state=&key=&qy=&area=&danjia=&func=&fea=&type=&kp=&mj=&sort=&pageNO=2

很显然,这是静态网页,翻页参数为「pageNO」,区域参数为「qy」,其余参数也很好理解,点击对应筛选项即可发现网页链接变化。咱们可以通过遍历区域和页码,将新房列表的房源URL提取下来,再遍历这些URL,抓取到每个房源的详情信息。

详情页分析

选择一个新房URL,点击进去,链接如下:

http://newhouse.fz0752.com/fontHtml/html/project/00020170060.html

即这个新房的id为「00020170060」,再点击详情信息,链接变为:

http://newhouse.fz0752.com/project/detail.shtml?num=20170060

即这个新房的「详情信息」的id为「20170060」,我们可以大胆假设这个id就是新房id截取的一部分。多找几个新房点击尝试,很容易验证这个规律。

反爬分析

相同的ip地址频繁访问同一个网页会有被封风险,本文采用fake_useragent,将随机生成的User-Agent请求头去访问网页,将减少ip封锁的风险。

代码实现

导入爬虫相关库,定义一个主函数,构建区域列表(不同区域对应不用的区域id),遍历并用requests去请求由区域参数和页码参数拼接的URL。这里将页码设置50上限,当遍历的某个房源URL长度为0(即不存在新房数据)时,直接break,让程序进行下一个区域的遍历,直至所有数据抓取完毕,程序停止。

# -*- coding = uft-8 -*-
# @Time : 2020/12/21 9:29 下午
# @Author : J哥
# @File : newhouse.pyimport csv
import time
import random
import requests
import traceback
from lxml import etree
from fake_useragent import UserAgentdef main():#46:惠城区,47:仲恺区,171:惠阳区,172:大亚湾,173:博罗县,174:惠东县,175:龙门县qy_list = [46,47,171,172,173,174,175]for qy in qy_list:   #遍历区域for page in range(1,50):   #遍历页数url = f'http://www.fz0752.com/project/list.shtml?state=&key=&qy={qy}&area=&danjia=&func=&fea=&type=&kp=&mj=&sort=&pageNO={page}'response = requests.request("GET", url, headers = headers,timeout = 5)print(response.status_code)if response.status_code == 200:re = response.content.decode('utf-8')print("正在提取" + str(qy) +'第' + str(page) + "页")#time.sleep(random.uniform(1, 2))print("-" * 80)# print(re)parse = etree.HTML(re)get_href(parse,qy)num = ''.join(parse.xpath('//*[@id="parent-content"]/div/div[6]/div/div[1]/div[2]/div[1]/div[2]/div[1]/div[1]/a/@href'))print(len(num))if len(num) == 0:breakif __name__ == '__main__':ua = UserAgent(verify_ssl=False)headers = {"User-Agent": ua.random}time.sleep(random.uniform(1, 2))main()

发送请求,获取新房列表网页,并解析到所有新房URL,同时将新房id替换为详情信息id。在程序运行中发现有少数新房URL不一致,因此这里做了判断,修改后可以获取完整的详情信息id,并拼接出对应的URL。

def get_href(parse,qy):items = parse.xpath('//*[@id="parent-content"]/div/div[6]/div/div[1]/div[2]/div')try:for item in items:href = ''.join(item.xpath('./div[2]/div[1]/div[1]/a/@href')).strip()print("初始href为:",href)#print(len(href))if len(href) > 25:href1 = 'http://newhouse.fz0752.com/project/detail.shtml?num=' + href[52:].replace(".html","")else:href1 = 'http://newhouse.fz0752.com/project/detail.shtml?num=' + href[15:]print("详情href为:",href1)try:get_detail(href1,qy)except:passexcept Exception:print(traceback.print_exc())

打印结果如下:

详情信息URL找到后,定义一个函数去请求详情页数据,同时携带qy参数,最后将其保存到csv中。

def get_detail(href1,qy):time.sleep(random.uniform(1, 2))response = requests.get(href1, headers=headers,timeout = 5)if response.status_code == 200:source = response.texthtml = etree.HTML(source)

开始解析详情页中的各个字段,这里用到xpath进行数据解析,由于需要解析的字段太多,高达41个,限于篇幅,以下仅给出部分字段解析代码。当然,其他字段解析基本一样。

#项目状态
try:xmzt = html.xpath('//*[@id="parent-content"]/div/div[3]/div[3]/div[1]/div[1]/text()')[0].strip()
except:xmzt = None
#项目名称
try:name = html.xpath('//*[@id="parent-content"]/div/div[3]/div[3]/div[1]/h1/text()')[0].strip()
except:name = None
#项目简介
ps = html.xpath('//*[@id="parent-content"]/div/div[3]/div[5]/div[2]/div')
for p in ps:try:xmjj = p.xpath('./p[1]/text()')[0].strip()except:xmjj = None
infos = html.xpath('//*[@id="parent-content"]/div/div[3]/div[5]/div[1]/div/table/tbody')
for info in infos:#行政区域try:xzqy = info.xpath('./tr[1]/td[1]/text()')[0].strip()except:xzqy = None#物业类型try:wylx = info.xpath('./tr[2]/td[1]/text()')[0].strip()except:wylx = None#销售价格try:xsjg = info.xpath('./tr[3]/td[1]/text()')[0].strip()except:xsjg = None······data = {'xmzt':xmzt,'name':name,'xzqy':xzqy,······'qy':qy}print(data)

解析完数据后,将其置于字典中,打印结果如下:然后追加保存为csv:

try:with open('hz_newhouse.csv', 'a', encoding='utf_8_sig', newline='') as fp:fieldnames = ['xmzt','name','xzqy',······,'qy']writer = csv.DictWriter(fp, fieldnames = fieldnames)writer.writerow(data)
except Exception:print(traceback.print_exc())

当然,我们也可以读取csv文件,并写入Excel:

df = pd.read_csv("newhouse.csv",names=['name','xzqy','wylx',······,'state'])
df = df.drop_duplicates()
df.to_excel("newhouse.xlsx",index=False)

总结

  1. 本文基于Python爬虫技术,提供了一种更直观的抓取新房数据的方法。

  2. 不建议抓取太多,容易使得服务器负载,浅尝辄止即可。

  3. 如需本文完整代码,后台回复「新房」两个字即可获取。

------------------- End -------------------

往期精彩文章推荐:

  1. 反爬虫策略手把手教你使用FastAPI来限制接口的访问速率

  2. 一篇文章带你解锁Python库中操作系统级别模块psutil

  3. 盘点5种基于Python生成的个性化语音方法

欢迎大家点赞,留言,转发,转载,感谢大家的相伴与支持

想加入Python学习群请在后台回复【入群

万水千山总是情,点个【在看】行不行

/今日留言主题/

随便说一两句吧~

这篇关于手把手教你用Python网络爬虫爬取新房数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/pdcfighting/article/details/112057355
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/168819

相关文章

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=