Extract Mass Data Via Bloomberg API

2023-10-08 19:30
文章标签 api data via extract mass bloomberg

本文主要是介绍Extract Mass Data Via Bloomberg API,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人博客地址 https://mengjiexu.com/post/bloomberg-api/

Motivation

Bloomberg has integrated massive data from various of data vendors. However, as a typical finance terminal designed for traders, it’s technically hard to use as a database for scholars. This blog will introduce how to prepare your Bloomberg Terminal for massive data extracting and how to access data via Bloomberg API.

Deploy Operation Enviornment

Bloomberg Access

  • Get a Bloomberg Terminal and of course a valid Bloomberg Account

  • Make sure the Bloomberg Add-in in Excel in this terminal works


    Figure 1: Bloomberg Add-in in Excel

Install Blommberg C++ SDK

  • Visit Bloomberg API Library and downlaod C++ Supported Release


    Figure 2: Bloomberg API Library
  • Copy blpapi3_32.dll and blpapi3_64.dll from the lib folder of downloaded zip file (typically named blpapi_cpp_3.16.6.1-windows.zip) to Bloomberg BLPAPI_ROOT folder in the terminal (usually C:/blp/DAPI). If any note saying the files would be replaced appears, confirm the replacement.


    Figure 3: Replace Files in BlPAPI_Root
  • Please make sure the Bloomberg App is closed before replacing those two root files.

Install Python/Anaconda

As Anaconda has integrated the majority of most frequently used Python packages, I would recommend installing Anaconda as a shortcut. If you choose to purely install Python, remember to click the option" Add Python into Enviornment Path" when installing to make sure your later procedures easier.

Suppose you’ve already installed Anaconda, launch the cmd from the navigator panel (or directly from the start menu).


Figure 4: Install Anaconda

Install Necessary Packages

Type the following orders in the cmd window you launched from Anaconda Navigator.

  • Install Bloomberg official Python API

    pip install blpapi --index-url=https://bcms.bloomberg.com/pip/simple/
    
  • Install numpy, pandas, ruamel.yaml and payarrow. As Anaconda has integrated numpy and pandas, we only need to install the last two packages.

    conda install ruamel.yaml
    conda install pyarrow
    
  • Install a third-party package that enables better data extracting experience xbbg

    pip install xbbg
    

Login in Bloomberg Terminal

This steps activates your access to Bloomberg data and enables the following data extracting.

Test API

Type python in the cmd window, you will enter the Python enviornment. If you enter the following code and get the same result as mine, that means you’ve deployed the operation enviornment for Bloomberg API successfully. All of the following examples are obtained from the Github Page of xbbg.

In [1]: from xbbg import blp

BDP example:

In [2]: blp.bdp(tickers='NVDA US Equity', flds=['Security_Name', 'GICS_Sector_Name'])
Out[2]:security_name        gics_sector_name
NVDA US Equity   NVIDIA Corp  Information Technology

BDP with overrides:

In [3]: blp.bdp('AAPL US Equity', 'Eqy_Weighted_Avg_Px', VWAP_Dt='20181224')
Out[3]:eqy_weighted_avg_px
AAPL US Equity               148.75

BDH example:

In [4]: blp.bdh(...:     tickers='SPX Index', flds=['high', 'low', 'last_price'],...:     start_date='2018-10-10', end_date='2018-10-20',...: )
Out[4]:SPX Indexhigh      low last_price
2018-10-10  2,874.02 2,784.86   2,785.68
2018-10-11  2,795.14 2,710.51   2,728.37
2018-10-12  2,775.77 2,729.44   2,767.13
2018-10-15  2,775.99 2,749.03   2,750.79
2018-10-16  2,813.46 2,766.91   2,809.92
2018-10-17  2,816.94 2,781.81   2,809.21
2018-10-18  2,806.04 2,755.18   2,768.78
2018-10-19  2,797.77 2,760.27   2,767.78

BDH example with Excel compatible inputs:

In [5]: blp.bdh(...:     tickers='SHCOMP Index', flds=['high', 'low', 'last_price'],...:     start_date='2018-09-26', end_date='2018-10-20',...:     Per='W', Fill='P', Days='A',...: )
Out[5]:SHCOMP Indexhigh      low last_price
2018-09-28     2,827.34 2,771.16   2,821.35
2018-10-05     2,827.34 2,771.16   2,821.35
2018-10-12     2,771.94 2,536.66   2,606.91
2018-10-19     2,611.97 2,449.20   2,550.47

An Example : Extract ESG Disclosure Scores

Suppose we want to extract the ESG Disclosure Score for a list of 8000 securities via API. A very first obstacle is that we have no idea what does this variable is named in API and which function we should use to request the data. Thus, the first step is to obtain all those information you demand by building an example spreadsheet through Bloomberg Excel Add-in.

Get The Function Name and Key Parameters

Click the Spreadsheet Builder in Bloomberg Excel Add-in. Click Historical Data Table.


Figure 5: Open Spreadsheet Builder

You can randomly pick one (or more) security. I would choose Apple (AAPL) here as an example. Then there appears a window where you can select fields you want.


Figure 6: Select Fields

Then you can select the data range and periodicity. For variables like ESG Disclosure Score, we typically choose “Yearly”.


Figure 7: Select Data Range and Periodicity

Finally, you will obtain the results. Click the cell exactly below Dates, you will get

  • Function bdh
  • Variable name ESG_DISCLOSURE_SCORE
  • Equity Name APPL US Equity
  • Start Date 1/01/2010
  • End Date 8/07/2021
  • Periodicity Per=Y

Figure 8: Find Out the Variable Names in API

With the above information, you can construct the function you need for extracting data via API.

Code

Purely Extract Single Variable

In this case, you only need to

  • Prepare a cusip list cusiplist.xlsx
  • Customize the key parameters as you need
    • Searching start date date_from
    • Searching end date date_until
    • Searching variable name target
import pandas as pd
from xbbg import blp
from tqdm import tqdmdf = pd.read_excel('cusiplist.xlsx')date_from = '20090101'
date_until = '20210630'
target = ['ESG_DISCLOSURE_SCORE']for cusip in tqdm(df_index['cusip']):df=blp.bdh(tickers=cusip,flds=target,start_date=date_from,end_date=date_until,\Per = 'Y')df.to_csv('ESG_Score_Single.csv', mode='a')
Extract Multiple Variables

As the institutional quota of request is monthly limited, it would be more efficient to request multiple variables together. In this case, you need to deal with a tricky situation. Suppose you request 7 variables for each firm, but some firm only has 4 variables valid while others have 5 variables valid. The distribution is random. API only returns the valid columns, which means the size of the returned dataframe and the order of the variable names could be random.

To deal with this situation, I write a function prepare() to pre-specify an order for all the requested variables to make sure the data returned for each variable should be written to the pre-specified column

  • For example, the data returned for SOCIAL_SCORE is always written to the 3rd column while the data returned for ENVIRON_DISCLOSURE_SCORE is always written to the 6th column

  • If there is no data returned for a variable during one request, then write a blank stirng "" to the respect column

import pandas as pd
from xbbg import blp
from tqdm import tqdm
import csvdf = pd.read_excel('cusiplist.xlsx')date_from = '20090101'
date_until = '20210630'
target = ['ESG_DISCLOSURE_SCORE', 'SOCIAL_SCORE', 'ENVIRONMENTAL_SCORE',\'SOCIAL_DISCLOSURE_SCORE', 'ENVIRON_DISCLOSURE_SCORE', 'GOVNCE_DISCLOSURE_SCORE', 'ESG_RISK_SCR_MOMENTUM']def prepare(temp):cols = [i[1] for i in temp.columns]diff = set(target) - set(cols)diffindex = [target.index(i) for i in diff]leftindex = set(range(len(target))) - set(diffindex)dictt = list(zip(range(len(cols)), leftindex))return([cols, dictt])# Iterate each cusip in the cusip list
for i in tqdm(df.iterrows()):# Obtain cusipcusip = i[1][2]# Request data from Bloomberg APItemp = blp.bdh(tickers=cusip,flds=target, start_date=date_from,\end_date=date_until, Per = 'Y')[cols, dictt] = prepare(temp)with open('Esg_Score_Multiple','a') as f:# Open a csv file with mode 'a', which allows adding new rows# without covering existed rowsg = csv.writer(f)# Create a list with length equal to the number of requested # variables plus 3headline =['DATE']+target+['CUSIP', 'FIELDS']res = [""]*(len(target)+3)# Iterate each row of returned dataframefor row in temp.iterrows():for j,k  in dictt:# Put date to the first cellres[0] = row[0]# Put variables returned by API following the# pre-specified orderres[k+1] = row[1][j]# Put the identifier of security into the listres[len(target)+1] = cusip# Put names of valid variables returned for the security# into the last cell of the list for cross-checkres[len(target)+2] = cols# Write the revised list to the opened csv fileg.writerow(res)

Sample Outcome


Figure 6: Sample Outcome - Multi Variables

Main References

  • https://github.com/alpha-xone/xbbg
  • https://www.bloomberg.com/professional/support/api-library/

这篇关于Extract Mass Data Via Bloomberg API的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/167527

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Java对接Dify API接口的完整流程

《Java对接DifyAPI接口的完整流程》Dify是一款AI应用开发平台,提供多种自然语言处理能力,通过调用Dify开放API,开发者可以快速集成智能对话、文本生成等功能到自己的Java应用中,本... 目录Java对接Dify API接口完整指南一、Dify API简介二、准备工作三、基础对接实现1.

一文详解如何在Vue3中封装API请求

《一文详解如何在Vue3中封装API请求》在现代前端开发中,API请求是不可避免的一部分,尤其是与后端交互时,下面我们来看看如何在Vue3项目中封装API请求,让你在实现功能时更加高效吧... 目录为什么要封装API请求1. vue 3项目结构2. 安装axIOS3. 创建API封装模块4. 封装API请求

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

HTML5 data-*自定义数据属性的示例代码

《HTML5data-*自定义数据属性的示例代码》HTML5的自定义数据属性(data-*)提供了一种标准化的方法在HTML元素上存储额外信息,可以通过JavaScript访问、修改和在CSS中使用... 目录引言基本概念使用自定义数据属性1. 在 html 中定义2. 通过 JavaScript 访问3.

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo