单细胞实战(1)数据下载-数据读取-seurat对象创建

2023-10-08 07:40

本文主要是介绍单细胞实战(1)数据下载-数据读取-seurat对象创建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章我们将介绍从geo数据库下载单细胞测序数据后,多种数据格式多样本情况下,如何读取数据并创建seurat对象。

本文主要结构:

一、数据下载

二、数据读取与seurat对象创建

  • 单样本情况下各种格式数据的读取,读取后seurat对象的创建
  • 多样本情况下各种格式数据的读取,读取后seurat对象的创建、合并

一、数据下载

大家自行去GEO官网(https://www.ncbi.nlm.nih.gov/gds)搜索下载自己想要的单细胞测序数据。本文后面会提供数据用于示例代码测试。

图片

GEO数据库上提供的单细胞测序数据常见格式主要有以下几种:

  • 10x Genomics格式: matrix.mtx、genes.tsv和barcodes.tsv文件是10X Genomics单细胞转录组测序数据的标准文件格式。这些文件通常存储在一个目录中,可以使用Read10X函数从R语言中读取。

    • matrix.mtx:这是一个稀疏矩阵文件,其中包含了每个单细胞的基因表达信息。矩阵中的每一行代表一个基因,每一列代表一个单细胞,矩阵中的每个元素表示该基因在该单细胞中的表达量。
    • genes.tsv(或features.tsv):这是一个文本文件,其中包含了每个基因的信息。每一行代表一个基因,每一列代表一个属性,例如基因名称、基因编号等。
    • barcodes.tsv:这是一个文本文件,其中包含了每个单细胞的条形码信息。每一行代表一个单细胞,每一列代表一个属性,例如条形码序列、细胞类型等。
  • h5格式: 这是一种用于存储大规模数据的二进制文件格式,它可以包含多种数据类型,如矩阵、表格、图像等。

  • 压缩文本矩阵(TXT或CSV的GZ文件): 压缩文本矩阵可以用于存储单细胞测序数据的表达矩阵或元数据,它可以减少文件的大小和传输时间 。

  • h5ad格式: 它专门用于存储和分享单细胞表达数据,它使用Anndata库来创建和读取。h5ad格式可以与cellxgene或Seurat等工具兼容,进行单细胞数据的可视化和分析 。

  • h5seurat格式: 这是一种基于h5格式的文件格式,它专门用于存储和分析多模态单细胞和空间分辨率表达实验,如CITE-seq或10X Visium等技术。h5seurat格式可以与SeuratDisk等工具兼容,进行单细胞数据的读写 。

  • R数据文件(RDS/RDATA文件): 以R语言的数据文件格式存储表达式矩阵,需要R软件直接读取。

二、数据读取与seurat对象创建

单样本

单样本情况下每种格式的数据读取与seurat对象创建演示:

10x Genomics格式:

演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234527

图片

文件下载后解压,并修改名称,存放路径如下图:

图片

读取文件并创建对象的代码参考:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 读取10x数据,data.dir参数指定存放文件的路径
seurat_data <- Read10X(data.dir = "./data/GSE234527/352")# 创建Seurat对象
seurat_obj <- CreateSeuratObject(counts = seurat_data,project = "GSM7470392_352",min.features = 200,min.cells = 3)# 查看Seurat对象的基本信息
seurat_obj

h5格式:

演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200874

图片

下载后解压,存放路径如图

图片

读取文件并创建对象的代码参考:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 指定要读取的文件所在位置和文件名称
h5_file <- "./data/GSE200874/GSM6045825_wt_filtered_gene_bc_matrices_h5_1.h5"# 读取h5格式的文件(使用Read10X_h5函数读取h5格式的单细胞数据文件)
seurat_data <- Read10X_h5(file = h5_file)# 创建Seurat对象(使用CreateSeuratObject函数创建Seurat对象,并将读取的h5格式数据转换为Seurat对象)
seurat_obj <- CreateSeuratObject(counts = seurat_data,project = "GSM6045825_wt",min.features = 200,min.cells = 3)# 查看Seurat对象的基本信息
seurat_obj

压缩文本矩阵(TXT或CSV的GZ文件):

这两种文件建议先手动加压到本地查看一下文件内容格式。

CSV压缩GZ格式演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse130148

图片

下载后文件的存放路径

图片

CSV压缩GZ格式示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 使用read.csv()函数从csv.gz格式的文件中读取数据,并将第一列作为行名
seurat_data<- read.csv(gzfile("./data/GSE130148/GSE130148_raw_counts.csv.gz"), row.names = 1)# 使用CreateSeuratObject()函数创建Seurat对象,并在此处指定项目名称
seurat_obj <- CreateSeuratObject(counts = seurat_data,min.features = 200,min.cells = 3, project = "GSE130148")

txt压缩GZ格式示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 使用read.table()函数从txt.gz格式的文件中读取数据,并将第一列作为行名
seurat_data<- read.table(gzfile("./data/GSE130xxx/xxxx.txt.gz"), row.names = 1, header = TRUE, sep = "\t")# 使用CreateSeuratObject()函数创建Seurat对象,并在此处指定项目名称
seurat_obj <- CreateSeuratObject(counts = seurat_data,min.features = 200,min.cells = 3, project = "GSE130xxx")

h5ad格式:

下载测试文件:

https://www.dropbox.com/s/ngs3p8n2i8y33hj/pbmc3k.h5ad?dl=0

# 下载测试文件
# https://www.dropbox.com/s/ngs3p8n2i8y33hj/pbmc3k.h5ad?dl=0# 导入所需的R包
library(Seurat)
# 安装SeuratDisk包
#remotes::install_github("mojaveazure/seurat-disk")
library(SeuratDisk)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 将h5ad格式文件转换为h5seurat格式文件,同时指定使用的assay为"RNA"
Convert("./data/pbmc/pbmc3k.h5ad", "h5seurat", overwrite = TRUE, assay = "RNA")# 使用LoadH5Seurat()函数加载h5seurat格式文件,并创建Seurat对象
seurat_pbmc <- LoadH5Seurat("./data/pbmc/pbmc3k.h5seurat")

R数据文件(RDS/RDATA文件)

# 使用load()函数读取RDATA文件
load("path/to/your/file.Rdata")# 使用readRDS()函数读取RDS文件
my_data <- readRDS("path/to/your/file.rds")

多样本

多样本情况下我们主要关注10x Genomics格式和压缩文本矩阵(TXT或CSV的GZ文件)

10x Genomics格式多样本读取与对象创建

测试数据下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234527

图片

示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 获取数据文件夹下的所有样本文件列表
samples <- list.files("./data/GSE234527")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 读取每个样本的10x数据并创建Seurat对象
for (sample in samples) {
# 拼接文件路径data.path <- paste0("./data/GSE234527/", sample)# 读取10x数据,data.dir参数指定存放文件的路径seurat_data <- Read10X(data.dir = data.path)# 创建Seurat对象,并指定项目名称为样本文件名seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 打印所有的Seurat对象列表
seurat_list# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]], y = seurat_list[-1],add.cell.ids = samples)
# 打印合并后的Seurat对象
print(seurat_combined)

h5格式多样本数据读入与对象创建:

测试数据下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200874

图片

下载后将数据解压:

图片

# 导入Seurat包
library(Seurat)# 设置工作目录
setwd("D:/project/scRNA")# 获取数据文件夹下的所有h5文件列表
h5_files <- list.files("./data/GSE200874", pattern = "\\.h5$")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 循环读取每个h5文件的数据并创建Seurat对象
for (h5_file in h5_files) {# 拼接文件路径data.path <- paste0("./data/GSE200874/", h5_file)# 读取h5数据seurat_data <- Read10X_h5(filename = data.path)# 创建Seurat对象,并指定项目名称为文件名sample_name <- tools::file_path_sans_ext(basename(h5_file))seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample_name,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 提取下划线前面的部分
sample_names <- sub("_.*", "", h5_files)
# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]],y = seurat_list[-1],add.cell.ids = sample_names)
# 打印合并后的Seurat对象
print(seurat_combined)

压缩文本矩阵(TXT或CSV的GZ文件)多样本:

下载测试文件:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

下载三个数据演示一下代码

图片

下载后解压:

图片

示例代码:


# 导入Seurat包
library(Seurat)# 导入Seurat包
library(Seurat)# 设置工作目录为存放数据文件的路径
setwd("D:/project/scRNA")# 获取所有csv.gz文件的列表
file_list <- list.files("./data/GSE150578", pattern = "\\.csv\\.gz$")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 循环读取每个csv.gz文件的数据并创建Seurat对象
for (file in file_list) {# 拼接文件路径data.path <- paste0("./data/GSE150578/", file)# 读取csv.gz文件数据data <- read.csv(gzfile(data.path), row.names = 1)# 创建Seurat对象,并指定项目名称为文件名(去除后缀)sample_name <- tools::file_path_sans_ext(basename(file))seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample_name,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 提取下划线前面的部分
sample_names <- sub("_.*", "", file_list)
# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]],y = seurat_list[-1],add.cell.ids = sample_names)
# 打印合并后的Seurat对象
print(seurat_combined)

大家可以使用fread()等更高效的函数代替文中的read.csv()函数,但是要注意读取后数据格式是否准确。

参考链接:https://www.jianshu.com/p/5b26d7bc37b7

参考链接:https://mp.weixin.qq.com/s/M15kWdH8eDONfakNhY-enA

这篇关于单细胞实战(1)数据下载-数据读取-seurat对象创建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163755

相关文章

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st