Pytorch使用DataLoader, num_workers!=0时的内存泄露

2023-10-08 05:30

本文主要是介绍Pytorch使用DataLoader, num_workers!=0时的内存泄露,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 描述一下背景,和遇到的问题:

我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。但第二次训练4个小时后,就被系统杀掉进程了,原因是Out of Memory。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。

  • 真正原因:

Python(Pytorch)中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。

  • 解决办法:

自定义DataLoader中的Dataset类,然后Dataset类中的list全部用np.array来代替。这样的话,DataLoader将np.array转换成Tensor的过程就不会发生内存泄露。

  • 下面给两个错误的示例代码和一个正确的代码:(都是我自己犯过的错误)

1.错误的DataLoader加载数据集方法1

# 加载数据
train_data = datasets.ImageFolder(root=TRAIN_DIR_ARG, transform=transform)
valid_data = datasets.ImageFolder(root=VALIDATION_DIR, transform=transform)
test_data = datasets.ImageFolder(root=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

2.错误的DataLoader加载数据集方法2(重写了Dataset方法)


class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []self.labels = []# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)self.labels.append(i)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# # 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

3.重写Dataset的正确方法(重写了Dataset方法,list全部转成np.array)

class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []  # 使用Python列表self.labels = []  # 使用Python列表# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)  # 添加到Python列表self.labels.append(i)  # 添加到Python列表# 转换为NumPy数组,这里就是解决内存泄露的关键代码self.image_paths = np.array(self.image_paths)self.labels = np.array(self.labels)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)# 将图像数据转换为NumPy数组image = np.array(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

这篇关于Pytorch使用DataLoader, num_workers!=0时的内存泄露的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163008

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali