统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计

本文主要是介绍统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在对临床数据的探索分析工作中,我们经常会使用Logistic回归分析去探索影响疾病的发生、发展的重要影响因素,或应用Logistic回归模型进行相关的预测分析。但是在进行Logistic回归分析时,样本含量的估计常常是令临床科研工作者最头痛的一件事了。常常纠结选哪些作为自变量或选多少个合适,因为大家通常采取的办法是选取研究中拟纳入的协变量个数的10~15倍(也有教科书上指出:经验上病例和对照的人数应该至少各有30~50例)作为样本含量的估计值。但大家应该注意,这个条件仅满足了多因素Logistic回归分析时数学运算所需的最低要求,这并不能保证足够的检验效能;此外,当研究设计阶段对协变量信息认识不全面时,也给样本含量的估计带来了困难。

由于Logistic回归主要描述了因变量和自变量间的一种非线性的关系,在进行Logistic回归分析的样本量估算时应根据其各自不同的适用条件选取不同的估算公式。不同的软件采用的样本量计算公式有所差异PASS软件作为功能强大的样本量计算软件,针对多种Logistic回归分析的都有针对的模块可进行计算,今天我们主要讲解PASS15.0软件实现当自变量为二分类的单因素二元Logistic回归分析时其优势比Wald检验的样本量估计。在PASS15.0软件中使用的是Demidenko等人2007年提出的近似公式,当只有一个自变量(假设该自变量为X)且为二分类变量时(X=0表示未发生,X=1表示发生),其主要的计算公式如下:

其中`P=(1-R)P0+ R(P1),即研究对象中Y=1的比例。

公式中,N为所需的样本含量,P0为X=0时Y=1的发生率,P1为X=1时Y=1的发生率(有时我们只知道OR,此时我们可根据:

得到:

但是在PASS15软件中可选择直接采用OR值进行计算),R为研究对象中X=1的比例,Z1-α/2表示标准正态分布的第1-α/2分位数或双侧α界值、Z1-β表示标准正态分布的第1-β分位数或单侧β界值,Z1-α/2和Z1-β均可通过查阅Z值表获得。

下面我们在本节将主要讲解采用PASS15.0软件实现当只有一个二分类变量时单因素二元Logistic回归分析时其优势比Wald检验所需样本含量估计方法。

例:假设某妇产科医生想研究同型半胱氨酸(HCY)与早产的关系,有报道表明,当孕妇血浆中HCY<12.4μmol/L时发生率为0.06,HCY≥12.4μmol/L时发生率为0.18,假定孕妇中HCY≥12.4μmol/L的人群占比为7%,α=0.05(双侧检验),β=0.20,问需要调查多少研究对象?

解析:本例严格来说应属于调查研究,其主要结局指标是是否发生早产,为二分类变量,主要研究因素(X)为孕妇的HCY是否≥12.4μmol/L,主要目的是研究HCY的水平与早产发生的关系,故我们可采用单因素Logistic回归分析两者的因果关系,可采用协变量为二分类变量的单因素二元Logistic回归分析的计算公式进行样本含量估算。本例共确定了五个参数:①α=0.05(双侧检验);②检验效能(1-β)=0.8;③X=0时Y=1的发生率(P0)=0.06,④X=1时Y=1的发生率(P1)=0.18;⑤研究对象中X=1的比例 R=7%。

PASS软件样本含量估算的具体步骤:

01 PASS主菜单进入样本含量估算设置界面:

打开PASS15软件,①点击Regression菜单并双击或其前面的“+”展开子菜单栏;→②点击Logistic Regression菜单并双击或其前面的“+”展开子菜单栏;→③点击Binary X(Wald Test);→④点击Tests for the Odds Ratio in Logistic Regression with One Binary X(Wald Test)→弹出Tests for the Odds Ratio in Logistic Regression with One Binary X(Wald Test)对话框进入单因素二元Logistic回归分析的样本含量估计界面,详见操作示意图(图1)。

02 PASS样本含量估算参数设置:

①Solve For:Sample Size,首先说明我们本次所求的结果为样本含量;→②Alternative Hypothesis:Two-Sided,表明进行双侧检验;→③Power:0.8,表明检验效能(1-β)为80%;→④Alpha:0.05,表示检验水准为0.05;→⑤P0[Pr(Y=1|X=0)]:0.06 ,指定X=0时Y=1的发生概率,即本例当HCY<12.4μmol/L时发生早产的概率为0.06;→⑥Use P1 or ORyx:P1,指定采用指标P1还是ORyx估算样本量(P1和ORyx可根据相关公式相互转换),由于本例知道了P1的取值,故本例选择采用P1估算样本量;→⑦P1[Pr(Y=1|X=1)]:0.18,指定X=1时Y=1的发生概率,即本例当HCY≥12.4μmol/L时发生早产的概率为0.18;→⑧Percent with X=1:7,指定研究对象中X=1的比例,即本例中孕妇人群中HCY≥12.4μmol/L的患者比例大约占总人群的7%;→⑨击Calculate按钮,完成单因素二元Logistic回归分析的样本含量估算,详见操作示意图(图2)。

03 PASS样本含量估算结果:

由图3可知,PASS软件给出的自变量为二分类的单因素二元Logistic回归分析样本含量估算结果主要有:样本含量估算的结果、相关参考文献、样本量估算报告中出现各名词的定义、对计算结果的总结描述以及假定脱落率为20%时所需的样本含量估计结果和其各名词的相关定义。由于脱落率不同研究结果各不相同,故本次不看脱落率为20%的相关结果,我们主要关注N这一结果即可:本研究最少需要596例孕妇作为研究对象才可能得出HCY含量高低与早产的发生有显著相关的结论。

想要了解更多统计教程相关知识,可到常笑医学网医学统计栏目进行查询和学习。

这篇关于统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162205

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配