代码 | 自适应大邻域搜索系列之(6) - 判断接受准则SimulatedAnnealing的代码解析

本文主要是介绍代码 | 自适应大邻域搜索系列之(6) - 判断接受准则SimulatedAnnealing的代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码 | 自适应大邻域搜索系列之(6) - 判断接受准则SimulatedAnnealing的代码解析

前言

前面三篇文章对大家来说应该很简单吧?不过轻松了这么久,今天再来看点刺激的。关于判断接受准则的代码。其实,判断接受准则有很多种,效果也因代码而异。今天介绍的是模拟退火的判断接受准则。那么,相关的原理之前的推文有讲过,不懂的同学回去翻翻这个文章 复习一下哈,小编也回去看看,咳咳~。好了,废话不多说,开始干活。

01 总体概述

其实这个ALNS的代码库提供了很多的判断接受准则,有最简单的直接根据目标值来判断,也有各种复杂的模拟退火降温冷却等过程来判断。不过,今天挑一个最具代表性的来讲吧,就是模拟退火的判断接受准则。其代码实现是由两个类IAcceptanceModule、SimulatedAnnealing来实现的。它们的关系依旧如下:
1240

其中IAcceptanceModule依旧是抽象类,只提供接口。下面对这两货进行解析。

02 IAcceptanceModule

这个抽象类也很简单,只提供了一个接口transitionAccepted,以用来判断是否要接受新的解,为纯虚函数,需要在后续的代码中重写的。

class IAcceptanceModule
{
public://! Indicate if the new created solution have to be accepted or not//! \param bestSolutionManager a reference to the best solution manager.//! \param currentSolution current solution.//! \param newSolution new solution.//! \param status the status of the current alns iteration.//! \return true if the transition is accepted, false otherwise.virtual bool transitionAccepted(IBestSolutionManager& bestSolutionManager, ISolution& currentSolution, ISolution& newSolution, ALNS_Iteration_Status& status) = 0;//! Some Acceptance modules needs to initialize some variable//! only when the solver actualy starts working. In this case//! you should override this method.virtual void startSignal(){};
};

03 SimulatedAnnealing

SimulatedAnnealing继承于上面的接口类IAcceptanceModule,它利用模拟退火的判断接受准则实现了transitionAccepted的功能。值得注意的是,该类成员变量里面是一个CoolingSchedule,用来获取当前温度。该表有另一个抽象类ICoolingSchedule定义,下面会详细说道。

class SimulatedAnnealing: public IAcceptanceModule {
private://! The cooling schedule to be use to compute the temperature each time it//! is needed.ICoolingSchedule* coolingSchedule;
public://! Constructor.//! \param cs the cooling schedule to be used by the simulated annealing.SimulatedAnnealing(ICoolingSchedule& cs);//! Destructor.virtual ~SimulatedAnnealing();//! Compute if the newly created solution have to be accepted or notbool transitionAccepted(IBestSolutionManager& bestSolutionManager, ISolution& currentSolution, ISolution& newSolution, ALNS_Iteration_Status& status);virtual void startSignal();};

其成员函数的实现也非常的简单,不过多说两句。先利用CoolingSchedule获取当前冷却过程的温度。如果新解目标值<当前解的,那么直接接受就行了。如果>,那么按照一定的概率接受。具体公式解释嘛,小编截个图过来吧,因为在以前的文章已经讲过了:
1240

不过这里的能量差计算用的是解的目标惩罚值算的,不是目标值。

bool SimulatedAnnealing::transitionAccepted(IBestSolutionManager& bestSolutionManager, ISolution& currentSolution, ISolution& newSolution, ALNS_Iteration_Status& status)
{double temperature = coolingSchedule->getCurrentTemperature();if(newSolution < currentSolution){return true;}else{double difference = newSolution.getPenalizedObjectiveValue() - currentSolution.getPenalizedObjectiveValue();double randomVal = static_cast<double>(rand())/static_cast<double>(RAND_MAX);return (exp(-1*difference/temperature)>randomVal);}
}void SimulatedAnnealing::startSignal()
{coolingSchedule->startSignal();
}

04 ICoolingSchedule

4.1 ICoolingSchedule

这货是一个抽象类,CoolingSchedule有很多种类型,根据不同需要由这个类可以派生出下面类型的CoolingSchedule:
1240

ICoolingSchedule只提供了两个接口,其中getCurrentTemperature是纯虚函数,用以获取当前的退火温度,需要重写。

class ICoolingSchedule
{
public://! \return the current temperature.virtual double getCurrentTemperature()=0;//! This method should be called when the optimization//! process start. The cooling schedules that actually need//! this should override this method.virtual void startSignal(){};
};

4.2 LinearCoolingSchedule

由于CoolingSchedule有很多类型,小编挑一个LinearCoolingSchedule给大家讲解吧。LinearCoolingSchedule主要的根据是迭代的次数来工作的。成员函数getCurrentTemperature是核心,用以获取当前的温度,便于上面的判断接受准则计算概率。

class LinearCoolingSchedule: public ICoolingSchedule {
private://! The current temperature.double currentTemperature;//! The amount to remove at each temperature recomputation.double amountRemove;
public://! Constructor.//! \param initSol the initial solution.//! \param csParam the cooling schedule parameters.//! \param nbIterations the number of iterations to be performed.LinearCoolingSchedule(ISolution& initSol, CoolingSchedule_Parameters& csParam, size_t nbIterations);//! Constructor.//! \param startingTemperature the initial temperature.//! \param nbIterations the number of iterations to be performed.LinearCoolingSchedule(double startingTemperature, size_t nbIterations);//! Destructor.virtual ~LinearCoolingSchedule();//! Compute and return the current temperature.//! \return the current temperature.double getCurrentTemperature();void startSignal(){};
};

然后现在来看看其具体方法是怎么实现的吧。其实也很简单,没有那么复杂。每次获取currentTemperature的时候呢,先让currentTemperature降降温,再返回。降温的幅度是利用currentTemperature 减去 amountRemove实现的。那么amountRemove又是怎么得出来的呢?LinearCoolingSchedule提供了两个构造函数,对应不同的计算方法:

  1. currentTemperature = (csParam.setupPercentage*initSol.getPenalizedObjectiveValue())/(-log(0.5));
    amountRemove = currentTemperature/static_cast(nbIterations);
    其中,setupPercentage为参数,nbIterations为总的迭代次数。
  2. amountRemove = startingTemperature/static_cast(nbIterations);
    其中,startingTemperature为传入参数。
LinearCoolingSchedule::LinearCoolingSchedule(ISolution& initSol, CoolingSchedule_Parameters& csParam, size_t nbIterations) {currentTemperature = (csParam.setupPercentage*initSol.getPenalizedObjectiveValue())/(-log(0.5));amountRemove = currentTemperature/static_cast<double>(nbIterations);}LinearCoolingSchedule::LinearCoolingSchedule(double startingTemperature, size_t nbIterations) {assert(nbIterations>0);assert(startingTemperature>=0);currentTemperature = startingTemperature;amountRemove = startingTemperature/static_cast<double>(nbIterations);}LinearCoolingSchedule::~LinearCoolingSchedule() {// Nothing to be done.
}double LinearCoolingSchedule::getCurrentTemperature()
{currentTemperature-= amountRemove;if(currentTemperature < 0){currentTemperature = 0;}assert(currentTemperature>=0);return currentTemperature;
}

05 小结

今天讲的总体也不是很难,相信之前模拟退火学得好的小伙伴一眼就能看懂了,如果其他小伙伴还不是很理解的话,回去看看之前的文章,看看模拟退火的判断接受准则再多加理解,相信对大家不是什么问题。

至此,代码已经讲得差不多了,估摸着还能再做几篇文章,依然感谢大家一路过来的支持。谢谢!咱们下期再见。

代码及相关内容可关注公众号。更多精彩尽在微信公众号【程序猿声】
微信公众号

posted @ 2019-05-10 20:25 短短的路走走停停 阅读( ...) 评论( ...) 编辑 收藏

这篇关于代码 | 自适应大邻域搜索系列之(6) - 判断接受准则SimulatedAnnealing的代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/161494

相关文章

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会