Pearson correlation皮尔逊相关性分析

2023-10-07 21:59

本文主要是介绍Pearson correlation皮尔逊相关性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在参数检验的相关性分析方法主要是皮尔逊相关(Pearson correlation)。既然是参数检验方法,肯定是有一些前提条件。皮尔逊相关的前提是必须满足以下几个条件:

  • 变量是连续变量;
  • 比较的两个变量必须来源于同一个总体;
  • 没有异常值;
  • 两个变量都符合正态分布。

正态分布的呈现是倒“U”型曲线。在实际分析过程中,想要一份数据同时满足以上条件,确实是有一定难度的。毕竟我们是没法保证收上来的数据,一定恰好是符合正态分布的。

皮尔逊相关系数的范围是位于[-1,1]之间。相关系数展示了方向性:

  • 如果相关系数接近1,说明两个变量之间呈较高的正相关性;
  • 如果相关系数接近-1,说明两个变量之间呈较高的负相关性;
  • 如果相关系数接近0,说明两个变量之间彼此独立,没有相关性。

皮尔逊相关的结果包括两个值,相关系数和P值。在相关性分析中,P值代表着两个变量是否显著相关。

一般而言,分析结果里,我们先看P值。如果P值小于0.05,那么两个变量呈显著的相关性。

然后再看相关系数的方向性,报告两个变量是显著的正相关或负相关。

SPSS操作详细步骤

第一步,选择“分析”——“相关”——“双变量”。

第二步,在相关系数里,选择“皮尔逊”。显著性可以选“双侧”。

 第三步,点击“选项”,可以勾选统计,计算平均数与标准差等,如下图所示。

其他设置都可以默认。直接点“确定”,就能生成结果了。

如果想要保留SPSS语法文件,可以先点击“粘贴”,保存本次所有操作,如图5.4所示。下次还要执行同样的操作,直接全选以后,点击绿色小三角符号,就可以生成皮尔逊分析结果了。

皮尔逊相关性分析结果显示,P值显著性为0.222,如红框中所示。P值大于0.05,说明示例的两个变量无显著相关性。相关性系数为0.265,离1比较远,也说明相关性不高。

 以上就是皮尔逊相关性分析的内容。

这篇关于Pearson correlation皮尔逊相关性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160705

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串