neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm

本文主要是介绍neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.介绍:
  k条最短路径算法(KSP):通常情况下,最短路径问题分为:单源最短路径和所有顶点对之间的最短路径,但两个都有一个问题,两种都只考虑两点之间最短的那一条路径,不考虑次短,再次短等路径。
  KSP问题是对最短路径问题的推广,它除了要确定最短路径之外,还要确定次短路径、第三短路径,…,知道找到第K短路径。用Pi表示从起点s到终点t的第i短路径,KSP问题是确定路径集合Pk={p1,p2,p3,…,pk},使得满足以下3个条件:
1)K条路径是按次序产生的,即对于所有的i(i=1,2,…,K-1),pi是在pi+1之前确定;
2)K条路径是按长度从小到大排列的,即对于所有的i(i=1,2,…,K-1),都有c(pi)<c(pi+1);
3)这K条路径是最短的,即对于所有的p∈Pst-PK,都有c(pk)<c§。

算法思想:算出第一条最短路径p(1),然后在比基础上依次算出其他的k-1条最短路径。在求p(i+1)时,将p(i)上除了终止节点外的所有节点视为偏离节点,并计算每个偏离点到终止节点的最短路径,再与之前的p(i)上起始节点到偏离节点的路径拼接,构成候选路径,进而求得最短偏离路径。

二. neo4j算法:

CALL algo.kShortestPaths(startNode:Node, endNode:Node, k:int, weightProperty:String,
{nodeQuery:'labelName', relationshipQuery:'relationshipName', direction:'OUT',
defaultValue:1.0,
maxDepth:42, write:'true', writePropertyPrefix:'PATH_'})
YIELD resultCount, loadMillis, evalMillis, writeMillis

三 .实例:

MERGE (a:Loc {name:'A'})
MERGE (b:Loc {name:'B'})
MERGE (c:Loc {name:'C'})
MERGE (d:Loc {name:'D'})
MERGE (e:Loc {name:'E'})
MERGE (f:Loc {name:'F'})
MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);

在这里插入图片描述

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.kShortestPaths.stream(start, end, 5, 'cost' ,{})
YIELD index, nodeIds, costs
RETURN [node in algo.getNodesById(nodeIds) | node.name] AS places,
costs,
reduce(acc = 0.0, cost in costs | acc + cost) AS totalCost

根据设置,我们得出了5条从节点A到节点F的最短路径
在这里插入图片描述

这篇关于neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160367

相关文章

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

SpringCloud之consul服务注册与发现、配置管理、配置持久化方式

《SpringCloud之consul服务注册与发现、配置管理、配置持久化方式》:本文主要介绍SpringCloud之consul服务注册与发现、配置管理、配置持久化方式,具有很好的参考价值,希望... 目录前言一、consul是什么?二、安装运行consul三、使用1、服务发现2、配置管理四、数据持久化总

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想