利用python实现激光雷达LAS数据滤波的7种方式,使用laspy读写

本文主要是介绍利用python实现激光雷达LAS数据滤波的7种方式,使用laspy读写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

激光雷达(LiDAR)数据在实际应用中可能受到噪声和不完美的测量影响,因此数据去噪和滤波方法变得至关重要,以提高数据质量和准确性。以下是一些常用的激光雷达数据去噪与滤波方法。
原始数据如下:
在这里插入图片描述

1. 移动平均滤波(Moving Average Filter):

移动平均滤波是一种简单的滤波方法,通过计算数据点周围一定范围内数据的平均值来平滑数据。这种方法适用于去除高频噪声,但可能会导致边缘信息模糊。

代码:

import laspy
import numpy as np
from scipy.signal import medfilt
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_ma = 'F:/激光雷达/武汉地调中心/output_moving_average.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用移动平均滤波
window_size = 5
filtered_z_ma = np.convolve(z, np.ones(window_size)/window_size, mode='same')# 创建新的LAS文件并保存滤波后数据
out_las_ma = laspy.file.File(out_file_path_ma, mode='w', header=in_las.header)
out_las_ma.x = x
out_las_ma.y = y
out_las_ma.z = filtered_z_ma
out_las_ma.close()

2. 中值滤波(Median Filter):

中值滤波是一种非线性滤波方法,将数据点周围的值按大小排序,然后取中间值作为滤波结果。中值滤波能够有效去除脉冲噪声和异常值,但可能会降低数据的细节。

代码:

import laspy
import numpy as np
from scipy.signal import medfilt
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_med = 'F:/激光雷达/武汉地调中心/output_median.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用中值滤波
window_size_med = 3
filtered_z_med = medfilt(z, kernel_size=window_size_med)# 创建新的LAS文件并保存滤波后数据
out_las_med = laspy.file.File(out_file_path_med, mode='w', header=in_las.header)
out_las_med.x = x
out_las_med.y = y
out_las_med.z = filtered_z_med
out_las_med.close()

3. 加权移动平均滤波(Weighted Moving Average Filter):

加权移动平均滤波将不同位置的数据点赋予不同的权重,根据权重计算加权平均值。这种方法可以根据数据分布的特点更好地平衡平滑和保留细节。

代码:

import laspy
import numpy as np
from scipy.signal import medfilt
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_weighted_ma = 'F:/激光雷达/武汉地调中心/output_weighted_moving_average.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用加权移动平均滤波
window_size = 5
weights = np.arange(1, window_size + 1).astype(float)  # 转换为浮点数类型
weights /= np.sum(weights)
filtered_z_weighted_ma = np.convolve(z, weights, mode='same')# 创建新的LAS文件并保存滤波后数据
out_las_weighted_ma = laspy.file.File(out_file_path_weighted_ma, mode='w', header=in_las.header)
out_las_weighted_ma.x = x
out_las_weighted_ma.y = y
out_las_weighted_ma.z = filtered_z_weighted_ma
out_las_weighted_ma.close()

4. 高斯滤波(Gaussian Filter):

高斯滤波基于高斯函数对数据进行平滑处理。它可以保留细节的同时有效地去除噪声,适用于光滑信号。

代码:

import laspy
import numpy as np
from scipy.ndimage import gaussian_filter1d
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_gaussian = 'F:/激光雷达/武汉地调中心/output_gaussian.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用高斯滤波
sigma = 1.0  # 高斯核标准差
filtered_z_gaussian = gaussian_filter1d(z, sigma=sigma)# 创建新的LAS文件并保存滤波后数据
out_las_gaussian = laspy.file.File(out_file_path_gaussian, mode='w', header=in_las.header)
out_las_gaussian.x = x
out_las_gaussian.y = y
out_las_gaussian.z = filtered_z_gaussian
out_las_gaussian.close()

5. 波形去除滤波(Waveform Removal Filter):

这种滤波方法主要用于去除激光雷达回波中的地面信号,以便更好地检测障碍物。该方法需要先对地面进行建模,然后将地面信号从数据中减去。

代码:

import laspy
import numpy as np
from scipy.signal import detrend
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_waveform_removal = 'F:/激光雷达/武汉地调中心/output_waveform_removal.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用波形去除滤波
filtered_z_waveform_removal = detrend(z)# 创建新的LAS文件并保存滤波后数据
out_las_waveform_removal = laspy.file.File(out_file_path_waveform_removal, mode='w', header=in_las.header)
out_las_waveform_removal.x = x
out_las_waveform_removal.y = y
out_las_waveform_removal.z = filtered_z_waveform_removal
out_las_waveform_removal.close()

6. 自适应滤波(Adaptive Filtering):

自适应滤波方法根据数据点的局部特征动态调整滤波参数。例如,自适应中值滤波根据数据分布的变化调整滤波窗口的大小,以平衡噪声去除和细节保留。

代码:

import laspy
import numpy as np
from scipy.signal import wiener
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_adaptive = 'F:/激光雷达/武汉地调中心/output_adaptive.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用自适应滤波
try:filtered_z_adaptive = wiener(z)
except (ValueError, ZeroDivisionError):# 处理除以零或无效值的情况filtered_z_adaptive = z  # 可以选择保持原始数据,或者使用其他滤波方法来代替# 创建新的LAS文件并保存滤波后数据
out_las_adaptive = laspy.file.File(out_file_path_adaptive, mode='w', header=in_las.header)
out_las_adaptive.x = x
out_las_adaptive.y = y
out_las_adaptive.z = filtered_z_adaptive
out_las_adaptive.close()

7. 小波变换滤波(Wavelet Transform Filter):

小波变换滤波可以将信号分解成不同频率的子信号,然后根据需要去除高频噪声,再将信号重构回去。这种方法在处理包含多尺度信息的数据时非常有用。

代码:

import laspy
import numpy as np
import pywt
from skimage.metrics import structural_similarity as ssim# 读取LAS文件
in_file_path = 'F:/激光雷达/武汉地调中心/1500N点云.las'
out_file_path_wavelet = 'F:/激光雷达/武汉地调中心/output_wavelet.las'in_las = laspy.file.File(in_file_path, mode='r')# 提取点云数据
x = in_las.x
y = in_las.y
z = in_las.z# 应用小波变换滤波
wavelet_name = 'db4'  # 小波基函数的名称
level = 2  # 分解的级别
coeffs = pywt.wavedec(z, wavelet_name, level=level)
coeffs[1:] = [pywt.threshold(coeff, value=0.5, mode='soft') for coeff in coeffs[1:]]  # 对细节系数进行软阈值处理
filtered_z_wavelet = pywt.waverec(coeffs, wavelet_name)# 创建新的LAS文件并保存滤波后数据
out_las_wavelet = laspy.file.File(out_file_path_wavelet, mode='w', header=in_las.header)
out_las_wavelet.x = x
out_las_wavelet.y = y
out_las_wavelet.z = filtered_z_wavelet
out_las_wavelet.close()

对比结果发现,误差指标显示,自适应滤波(Adaptive Filtering)和小波变换滤波(Wavelet Transform Filter)处理效果较好,其中后者最佳。

这篇关于利用python实现激光雷达LAS数据滤波的7种方式,使用laspy读写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/159368

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使