机器学习必修课 - 使用管道 Pipeline

2023-10-07 05:01

本文主要是介绍机器学习必修课 - 使用管道 Pipeline,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标:学习使用管道(pipeline)来提高机器学习代码的效率。

1. 运行环境:Google Colab

import pandas as pd
from sklearn.model_selection import train_test_split
!git clone https://github.com/JeffereyWu/Housing-prices-data.git
  • 下载数据集

2. 加载房屋价格数据集,进行数据预处理,并将数据划分为训练集和验证集

# Read the data
X_full = pd.read_csv('/content/Housing-prices-data/train.csv', index_col='Id')
X_test_full = pd.read_csv('/content/Housing-prices-data/test.csv', index_col='Id')# Remove rows with missing target, separate target from predictors
X_full.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X_full.SalePrice
X_full.drop(['SalePrice'], axis=1, inplace=True)# Break off validation set from training data
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2,random_state=0)
  • 使用Pandas的read_csv函数从指定路径读取训练集和测试集的CSV文件。index_col='Id'表示将数据集中的’Id’列作为索引列。
  • X_full数据中删除了带有缺失目标值的行,这是因为目标值(‘SalePrice’)是我们要预测的值,所以必须确保每个样本都有一个目标值。然后,将目标值从X_full数据中分离出来,存储在变量y中,并从X_full中删除了目标值列,以便将其视为预测特征。

3. 选择具有相对低基数(唯一值数量较少)的分类(categorical)列

# "Cardinality" means the number of unique values in a column
# Select categorical columns with relatively low cardinality (convenient but arbitrary)
categorical_cols = [cname for cname in X_train_full.columns ifX_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == "object"]
  • 识别具有相对较少不同类别的分类列,因为这些列更适合进行独热编码,而不会引入太多的新特征。

4. 选择数值型(numerical)列

# Select numerical columns
numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']]
  • 识别数据集中包含数值数据的列,因为这些列通常用于构建数值特征,并且需要用于训练和评估数值型机器学习模型。

5. 将数据集中的列限制在所选的分类(categorical)列和数值(numerical)列上

# Keep selected columns only
my_cols = categorical_cols + numerical_cols
X_train = X_train_full[my_cols].copy()
X_valid = X_valid_full[my_cols].copy()
X_test = X_test_full[my_cols].copy()
  • 创建了一个名为my_cols的列表,其中包含了要保留的列名
  • 使用X_train_full[my_cols].copy()X_valid_full[my_cols].copy()从原始训练数据集(X_train_fullX_valid_full)中创建了新的数据集(X_trainX_valid)。这两个数据集只包含了my_cols中列名所对应的列,其他列被丢弃了。最后,同样的操作也被应用到测试数据集上,创建了包含相同列的测试数据集X_test
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error

6. 准备数值型数据和分类型数据以供机器学习模型使用

# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])
  • 创建了一个名为numerical_transformer的预处理器,用于处理数值型数据。在这里,使用了SimpleImputer,并设置了策略为’constant’,表示将缺失的数值数据填充为一个常数值。
  • 使用SimpleImputer来填充缺失值,策略为’most_frequent’,表示使用出现频率最高的值来填充缺失的分类数据。
  • 使用OneHotEncoder来执行独热编码,将分类数据转换成二进制的形式,并且设置了handle_unknown='ignore',以处理在转换过程中遇到未知的分类值。
  • 使用ColumnTransformer来组合数值型和分类型数据的预处理器,将它们一起构建成一个整体的预处理过程。

7. 建立、训练和评估一个随机森林回归模型

# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)# Bundle preprocessing and modeling code in a pipeline
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model 
clf.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))
  • 创建了一个名为model的机器学习模型。在这里,使用了随机森林回归模型,它是一个基于决策树的集成学习模型,包含了100颗决策树,并设置了随机种子random_state为0,以确保结果的可重复性。
  • 创建了一个名为clf的机器学习管道(Pipeline)。管道将数据预处理步骤(preprocessor)和模型训练步骤(model)捆绑在一起,确保数据首先被预处理,然后再用于模型训练。
  • MAE是一种衡量模型预测误差的指标,其值越小表示模型的性能越好。

MAE: 17861.780102739725

8. 重新进行数据预处理和定义一个机器学习模型

# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)
  • 使用SimpleImputer来填充分类型数据中的缺失值,策略改为’constant’,改用常数值填充。
# Bundle preprocessing and modeling code in a pipeline
my_pipeline = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model 
my_pipeline.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = my_pipeline.predict(X_valid)# Evaluate the model
score = mean_absolute_error(y_valid, preds)
print('MAE:', score)

MAE: 17621.3197260274

9. 再一次进行数据预处理和定义一个机器学习模型

# 自定义数值型数据的预处理步骤
numerical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')),  # 可以使用均值填充缺失值
])# 自定义分类型数据的预处理步骤
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),  # 使用最频繁的值填充缺失值('onehot', OneHotEncoder(handle_unknown='ignore'))  # 执行独热编码
])# 定义自己的模型
model = RandomForestRegressor(n_estimators=200, random_state=42)  # 增加决策树数量,设置随机种子# 将自定义的预处理和模型捆绑在一起
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# 预处理训练数据,训练模型
clf.fit(X_train, y_train)# 预处理验证数据,获取预测结果
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))

MAE: 17468.0611130137

# Preprocessing of test data, fit model
preds_test = clf.predict(X_test)
# Save test predictions to file
output = pd.DataFrame({'Id': X_test.index,'SalePrice': preds_test})
output.to_csv('submission.csv', index=False)

这篇关于机器学习必修课 - 使用管道 Pipeline的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156183

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完