【Python】机器学习笔记10-高斯混合模型(Gaussian Mixture Model)

本文主要是介绍【Python】机器学习笔记10-高斯混合模型(Gaussian Mixture Model),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文的参考资料:《Python数据科学手册》;
本文的源代上传到了Gitee上;

本文用到的包:

%matplotlib inline
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipsefrom sklearn.datasets import make_blobs, make_moons, load_digits
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCAsns.set()
plt.rc('font', family='SimHei')
plt.rc('axes', unicode_minus=False)

高斯混合模型GMM

理解K-means算法的缺陷

理解K-means模型的一种方法是:它在以每一个簇的中心为圆心画了一个圆,圆的半径是这一簇中的与簇中心距离最远的点到簇中心的距离,基于上述判断,对K-means聚类的可视化如下所示:

n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, np.ndarray
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axesmodel = KMeans(n_clusters=n_clusters)
y_pred = model.fit_predict(x_train)cm = plt.cm.get_cmap('rainbow', lut=n_clusters)
fig.suptitle('K-means应用于圆形聚类数据(正常工作)')
ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.6, cmap=cm)
ax_data.axis('equal')
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, edgecolors='k', alpha=0.6, cmap=cm)
for i in range(n_clusters):center = model.cluster_centers_[i, :]dot = x_train[y_pred == i]r = 0for j in range(dot.shape[0]):dx = center[0] - dot[j, 0]dy = center[1] - dot[j, 1]r = max(r, np.sqrt(dx ** 2 + dy ** 2))ax_pred.add_patch(plt.Circle(xy=center, radius=r, alpha=0.3, lw=3, fc='gray'))
ax_pred.axis('equal')
ax_pred.set_title('K-means聚类结果')

在这里插入图片描述

在这样的工作方式之下,每一个数据点到簇中心的距离会被作为训练集分配簇的硬切断(只能定性的判断每一个数据点属于哪一个簇,不能计算概率);同时,这也意味着K-means要求数据是接近圆形的分布,所以,如果我们对数据进行一些线性变换,K-means就会失效,如图下面的示例所示:

n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)
rng = np.random.RandomState(seed=13)
x_train = np.dot(x_train, rng.randn(2, 2))model = KMeans(n_clusters=n_clusters)
y_pred = model.fit_predict(x_train)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, np.ndarray
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axescm = plt.cm.get_cmap('rainbow', lut=n_clusters)
fig.suptitle('K-means应用于非圆形聚类数据(失效)')
ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.6, cmap=cm)
ax_data.axis('equal')
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, edgecolors='k', alpha=0.6, cmap=cm)
for i in range(n_clusters):center = model.cluster_centers_[i, :]dot = x_train[y_pred == i]r = 0for j in range(dot.shape[0]):dx = center[0] - dot[j, 0]dy = center[1] - dot[j, 1]r = max(r, np.sqrt(dx ** 2 + dy ** 2))ax_pred.add_patch(plt.Circle(xy=center, radius=r, alpha=0.3, lw=3, fc='gray'))
ax_pred.axis('equal')
ax_pred.set_title('K-means聚类结果')

在这里插入图片描述

一般化的E-M:高斯混合模型(Gaussian Mixture Model)

从K-means存在的缺点出发,可以提出如下的改进意见:例如可以比较数据点与所有的簇中心的距离从而衡量这个点分配到每一个簇的概率,或者将簇的边界由正圆变为椭圆来来得到不同形状的簇,这两个改进意见构成了GMM的两个基本部分。

期望最大化应用于GMM的步骤:

  • 确定初始簇的位置和形状
  • 重复一下步骤直至结果收敛:
    • 为每一个点找到对应属于每个簇的概率作为权重
    • 更新每个簇的位置,将其标准化,并给予所有数据点的权重来确定簇的形状

在sklearn中,高斯混合模型由GaussianMixture类实现,这个类的covariance_type参数控制了每一个簇的形状自由度;

covariance_type=diag时,簇在每个维度的尺寸可以单独设置,但是椭圆的边界与主轴坐标平行;

covariance_type=spherical时,簇在每个维度上的尺寸相等,效果类似于K-means;

covariance_type=full时,允许每一个簇在任意方向上改变尺寸;

在之前的数据上使用高斯混合模型,效果如下:

n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)
rng = np.random.RandomState(seed=13)
x_train = np.dot(x_train, rng.randn(2, 2))model = GaussianMixture(n_components=n_clusters, covariance_type='full')
model.fit(x_train)
y_pred = model.predict(x_train)
y_prob = model.predict_proba(x_train)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, list
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axes
cm = plt.cm.get_cmap('rainbow', lut=4)ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.5, cmap=cm)
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, s=50 * y_prob.max(axis=1) ** 4,edgecolors='k', alpha=0.5, cmap=cm,
)
for pos, cov, w in zip(model.means_, model.covariances_, model.weights_):  # 椭圆的画法就照抄书本了u, s, vt = np.linalg.svd(cov)angle = np.degrees(np.arctan2(u[1, 0], u[0, 0]))width, height = 2 * np.sqrt(s)for nsig in range(1, 4):ax_pred.add_patch(Ellipse(pos, nsig * width, nsig * height, angle,alpha=w,))
ax_pred.set_title(f'GMM聚类结果,协方差类型选择为:{model.covariance_type}')fig.suptitle('展示GMM强大的聚类效果')

(这里以概率大小作为了每一个点的尺寸)

在这里插入图片描述

将GMM用于密度估计

虽然我们这里将GMM当作聚类算法进行介绍,但是GMM在本质上是一个密度估计算法,用于描述数据分布的生成概率模型

例如,下面我们使用一个16簇的GMM模型拟合数据,然后通过拟合得到的16个成分的分布情况并生成新的数据;

n_clusters=16
fig, axs = plt.subplots(1, 3, figsize=(18, 6))  # type: plt.Figure, list
ax_data, ax_model, ax_resample = (i for i in axs)  # type: plt.Axes, plt.Axes, plt.Axes
cm = plt.cm.get_cmap('rainbow', lut=n_clusters)x_train, y_true = make_moons(n_samples=300, random_state=233, noise=0.05)
model = GaussianMixture(n_components=n_clusters, covariance_type='full')model.fit(x_train)
y_pred = model.predict(x_train)
y_prob = model.predict_proba(x_train)
x_resample = model.sample(n_samples=400)[0]ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.5, cmap=cm)
ax_data.set_title('训练数据')ax_model.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, s=50 * y_prob.max(axis=1) ** 4,edgecolors='k', alpha=0.5, cmap=cm,
)
for pos, cov, w in zip(model.means_, model.covariances_, model.weights_):  # 椭圆的画法就照抄书本了u, s, vt = np.linalg.svd(cov)angle = np.degrees(np.arctan2(u[1, 0], u[0, 0]))width, height = 2 * np.sqrt(s)for nsig in range(1, 4):ax_model.add_patch(Ellipse(pos, nsig * width, nsig * height, angle,alpha=2.33 * w,))
ax_model.set_title(f'模型训练之后得到的{model.n_components}个簇的分布情况')ax_resample.scatter(x=x_resample[:, 0], y=x_resample[:, 1], c='blue', edgecolors='k', alpha=0.3, cmap=cm)
ax_resample.set_title('通过GMM生成新数据')fig.suptitle('GMM用于密度估计(老本行)')

在这里插入图片描述

既然要使用GMM来进行密度估计,就会牵扯到到底要使用多少个簇的问题,sklearn中的GMM模型内置了两种度量准则:**赤池信息量准则(AIC)贝叶斯信息准则(BIC)**来帮助我们确定GMM模型的最佳成分数;

一般来讲,对应AIC或者BIC最小的成分数是最佳的;
AIC和BIC两个指标可以由GaussianMixture类的aic函数和bic函数计算;

models = [GaussianMixture(n_components=i, random_state=233, covariance_type='full').fit(x_train) for i in range(1, 20 + 1)]
aic = [m.aic(x_train) for m in models]
bic = [m.bic(x_train) for m in models]plt.figure(figsize=(10, 10))
plt.plot(range(1, 20 + 1), aic, label='AIC')
plt.plot(range(1, 20 + 1), bic, label='BIC')
plt.legend(loc='upper right')
plt.title('GMM的AIC与BIC')

在这里插入图片描述

案例:使用GMM生成新的手写数字

由于我们使用的手写数字由64维,而GMM在高维数据中可能不太会收敛,我们首先使用PCA进行降维,保留99%的方差;

将数据降维之后,我们使用GMM内置的AIC和BIC函数计算不同成分数下模型的这两个指标,确定最后使用的成分数,这里选择100个成分;

最后使用训练好的GMM模型生成数据,然后使用之前的PCA模型将数据重新转换至64维,并显示,查看效果;

降维并确定成分数:

digits = load_digits()pca = PCA(n_components=0.99, whiten=True)
digits_data_reduced = pca.fit_transform(digits.data)
print(f'原始数据维度:{digits.data.shape[-1]}')
print(f'使用PCA降维并保留{pca.n_components * 100}%方差后的维度:{digits_data_reduced.shape[-1]}')n_components = list(range(50, 200 + 1, 5))
models = [GaussianMixture(n_components=i, covariance_type='full').fit(digits_data_reduced) for i in n_components]
aic = [m.aic(digits_data_reduced) for m in models]
bic = [m.bic(digits_data_reduced) for m in models]plt.figure(figsize=(10, 10))
plt.plot(n_components, aic, label='AIC')
plt.plot(n_components, bic, label='BIC')
plt.legend(loc='upper right')
plt.title('确定对手写数字使用GMM的最佳成分数')

在这里插入图片描述

训练模型并生成新的手写数字:

model = GaussianMixture(n_components=100, covariance_type='full')
model.fit(digits_data_reduced)
digits_new = model.sample(200)[0]
digits_new = pca.inverse_transform(digits_new)
digits_new = digits_new.reshape(digits_new.shape[0], 8, 8)fig, axs = plt.subplots(10, 10, figsize=(12, 12))  # type: plt.Figure, np.ndarray
fig.subplots_adjust(hspace=0.1, wspace=0.1)
fig.suptitle('手写数字-训练数据')
for i, ax in enumerate(axs.flatten()):  # type: int, plt.Axesax.imshow(digits.data[i].reshape(8, 8), cmap='binary', origin='lower')ax.set_xticks([])ax.set_yticks([])ax.text(x=0, y=0, s=str(digits.target_names[digits.target[i]]), color='green')fig, axs = plt.subplots(10, 10, figsize=(12, 12))  # type: plt.Figure, np.ndarray
fig.subplots_adjust(hspace=0.1, wspace=0.1)
fig.suptitle('手写数字-使用GMM学习后生成')
for i, ax in enumerate(axs.flatten()):  # type: int, plt.Axesax.imshow(digits_new[i], cmap='binary', origin='lower')ax.set_xticks([])ax.set_yticks([])

在这里插入图片描述

在这里插入图片描述

我最后做出来的结果并没有书本上的结果那么理想,原因暂时未知;

完整代码(Jupyter Notebook)

#%% md# 高斯混合模型GMM## 理解K-means算法的缺陷理解K-means模型的一种方法是:它在以每一个簇的中心为圆心画了一个圆,圆的半径是这一簇中的与簇中心距离最远的点到簇中心的距离,基于上述判断,
对K-means聚类的可视化如下所示:在这样的工作方式之下,每一个数据点到簇中心的距离会被作为训练集分配簇的**硬切断**(只能定性的判断每一个数据点属于哪一个簇,不能计算概率),
同时,这也意味着K-means要求数据是接近圆形的分布,所以,如果我们对数据进行一些线性变换,K-means就会失效,如图所示:#%%%matplotlib inline
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipsefrom sklearn.datasets import make_blobs, make_moons, load_digits
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCAsns.set()
plt.rc('font', family='SimHei')
plt.rc('axes', unicode_minus=False)#%%n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, np.ndarray
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axesmodel = KMeans(n_clusters=n_clusters)
y_pred = model.fit_predict(x_train)cm = plt.cm.get_cmap('rainbow', lut=n_clusters)
fig.suptitle('K-means应用于圆形聚类数据(正常工作)')
ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.6, cmap=cm)
ax_data.axis('equal')
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, edgecolors='k', alpha=0.6, cmap=cm)
for i in range(n_clusters):center = model.cluster_centers_[i, :]dot = x_train[y_pred == i]r = 0for j in range(dot.shape[0]):dx = center[0] - dot[j, 0]dy = center[1] - dot[j, 1]r = max(r, np.sqrt(dx ** 2 + dy ** 2))ax_pred.add_patch(plt.Circle(xy=center, radius=r, alpha=0.3, lw=3, fc='gray'))
ax_pred.axis('equal')
ax_pred.set_title('K-means聚类结果')#%%n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)
rng = np.random.RandomState(seed=13)
x_train = np.dot(x_train, rng.randn(2, 2))model = KMeans(n_clusters=n_clusters)
y_pred = model.fit_predict(x_train)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, np.ndarray
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axescm = plt.cm.get_cmap('rainbow', lut=n_clusters)
fig.suptitle('K-means应用于非圆形聚类数据(失效)')
ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.6, cmap=cm)
ax_data.axis('equal')
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, edgecolors='k', alpha=0.6, cmap=cm)
for i in range(n_clusters):center = model.cluster_centers_[i, :]dot = x_train[y_pred == i]r = 0for j in range(dot.shape[0]):dx = center[0] - dot[j, 0]dy = center[1] - dot[j, 1]r = max(r, np.sqrt(dx ** 2 + dy ** 2))ax_pred.add_patch(plt.Circle(xy=center, radius=r, alpha=0.3, lw=3, fc='gray'))
ax_pred.axis('equal')
ax_pred.set_title('K-means聚类结果')#%% md## 一般化的E-M:高斯混合模型(Gaussian Mixture Model)从K-means存在的缺点出发,可以提出如下的改进意见:例如可以比较数据点与所有的簇中心的距离从而衡量这个点分配到每一个簇的概率,或者将簇的边界由正圆
变为椭圆来来得到不同形状的簇,这两个改进意见构成了GMM的两个基本部分。期望最大化应用于GMM的步骤:-   确定初始簇的位置和形状
-   重复一下步骤直至结果收敛:-   为每一个点找到对应属于每个簇的概率作为权重-   更新每个簇的位置,将其标准化,并给予所有数据点的权重来确定簇的形状在sklearn中,高斯混合模型由GaussianMixture类实现,这个类的covariance_type参数控制了每一个簇的形状自由度;<br>
covariance_type=diag时,簇在每个维度的尺寸可以单独设置,但是椭圆的边界与主轴坐标平行;<br>
covariance_type=spherical时,簇在每个维度上的尺寸相等,效果类似于K-means;<br>
covariance_type=full时,允许每一个簇在任意方向上改变尺寸;#%%n_clusters = 4
x_train, y_true = make_blobs(n_samples=200, centers=n_clusters,cluster_std=1.5, random_state=233,
)
rng = np.random.RandomState(seed=13)
x_train = np.dot(x_train, rng.randn(2, 2))model = GaussianMixture(n_components=n_clusters, covariance_type='full')
model.fit(x_train)
y_pred = model.predict(x_train)
y_prob = model.predict_proba(x_train)fig, axs = plt.subplots(1, 2, figsize=(16, 8))  # type: plt.Figure, list
ax_data = axs[0]  # type: plt.Axes
ax_pred = axs[1]  # type: plt.Axes
cm = plt.cm.get_cmap('rainbow', lut=4)ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.5, cmap=cm)
ax_data.set_title('训练数据')ax_pred.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, s=50 * y_prob.max(axis=1) ** 4,edgecolors='k', alpha=0.5, cmap=cm,
)
for pos, cov, w in zip(model.means_, model.covariances_, model.weights_):  # 椭圆的画法就照抄书本了u, s, vt = np.linalg.svd(cov)angle = np.degrees(np.arctan2(u[1, 0], u[0, 0]))width, height = 2 * np.sqrt(s)for nsig in range(1, 4):ax_pred.add_patch(Ellipse(pos, nsig * width, nsig * height, angle,alpha=w,))
ax_pred.set_title(f'GMM聚类结果,协方差类型选择为:{model.covariance_type}')fig.suptitle('展示GMM强大的聚类效果')#%% md## 将GMM用于密度估计虽然我们这里将GMM当作聚类算法进行介绍,但是GMM在本质上是一个**密度估计算法**,用于描述**数据分布的生成概率模型**<br>
例如,下面我们使用一个16簇的GMM模型拟合数据,然后通过拟合得到的16个成分的分布情况生成新的数据;<br>既然要使用GMM来进行密度估计,就会牵扯到到底要使用多少个簇的问题,sklearn中的GMM模型内置了两种度量准则:**赤池信息量准则(AIC)****贝叶斯信息准则(BIC)**来帮助我们确定GMM模型的最佳成分数;<br>
一般来讲,对应AIC或者BIC最小的成分数是最佳的;#%%n_clusters=16
fig, axs = plt.subplots(1, 3, figsize=(18, 6))  # type: plt.Figure, list
ax_data, ax_model, ax_resample = (i for i in axs)  # type: plt.Axes, plt.Axes, plt.Axes
cm = plt.cm.get_cmap('rainbow', lut=n_clusters)x_train, y_true = make_moons(n_samples=300, random_state=233, noise=0.05)
model = GaussianMixture(n_components=n_clusters, covariance_type='full')model.fit(x_train)
y_pred = model.predict(x_train)
y_prob = model.predict_proba(x_train)
x_resample = model.sample(n_samples=400)[0]ax_data.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_true, edgecolors='k', alpha=0.5, cmap=cm)
ax_data.set_title('训练数据')ax_model.scatter(x=x_train[:, 0], y=x_train[:, 1], c=y_pred, s=50 * y_prob.max(axis=1) ** 4,edgecolors='k', alpha=0.5, cmap=cm,
)
for pos, cov, w in zip(model.means_, model.covariances_, model.weights_):  # 椭圆的画法就照抄书本了u, s, vt = np.linalg.svd(cov)angle = np.degrees(np.arctan2(u[1, 0], u[0, 0]))width, height = 2 * np.sqrt(s)for nsig in range(1, 4):ax_model.add_patch(Ellipse(pos, nsig * width, nsig * height, angle,alpha=2.33 * w,))
ax_model.set_title(f'模型训练之后得到的{model.n_components}个簇的分布情况')ax_resample.scatter(x=x_resample[:, 0], y=x_resample[:, 1], c='blue', edgecolors='k', alpha=0.3, cmap=cm)
ax_resample.set_title('通过GMM生成新数据')fig.suptitle('GMM用于密度估计(老本行)')models = [GaussianMixture(n_components=i, random_state=233, covariance_type='full').fit(x_train) for i in range(1, 20 + 1)]
aic = [m.aic(x_train) for m in models]
bic = [m.bic(x_train) for m in models]plt.figure(figsize=(10, 10))
plt.plot(range(1, 20 + 1), aic, label='AIC')
plt.plot(range(1, 20 + 1), bic, label='BIC')
plt.legend(loc='upper right')
plt.title('GMM的AIC与BIC')#%% md## 案例:使用GMM生成新的手写数字由于我们使用的手写数字由64维,而GMM在高维数据中可能不太会收敛,我们首先使用PCA进行降维,保留99%的方差;将数据降维之后,我们使用GMM内置的AIC和BIC函数计算不同成分数下模型的两个标准,确定最后使用的成分数,这里选择100个成分;最后使用训练好的GMM模型生成数据,然后使用之前的PCA模型将数据重新转换至64维,并显示,查看效果;#%%digits = load_digits()pca = PCA(n_components=0.99, whiten=True)
digits_data_reduced = pca.fit_transform(digits.data)
print(f'原始数据维度:{digits.data.shape[-1]}')
print(f'使用PCA降维并保留{pca.n_components * 100}%方差后的维度:{digits_data_reduced.shape[-1]}')n_components = list(range(50, 200 + 1, 5))
models = [GaussianMixture(n_components=i, covariance_type='full').fit(digits_data_reduced) for i in n_components]
aic = [m.aic(digits_data_reduced) for m in models]
bic = [m.bic(digits_data_reduced) for m in models]plt.figure(figsize=(10, 10))
plt.plot(n_components, aic, label='AIC')
plt.plot(n_components, bic, label='BIC')
plt.legend(loc='upper right')
plt.title('确定对手写数字使用GMM的最佳成分数')#%%model = GaussianMixture(n_components=100, covariance_type='full')
model.fit(digits_data_reduced)
digits_new = model.sample(200)[0]
digits_new = pca.inverse_transform(digits_new)
digits_new = digits_new.reshape(digits_new.shape[0], 8, 8)fig, axs = plt.subplots(10, 10, figsize=(12, 12))  # type: plt.Figure, np.ndarray
fig.subplots_adjust(hspace=0.1, wspace=0.1)
fig.suptitle('手写数字-训练数据')
for i, ax in enumerate(axs.flatten()):  # type: int, plt.Axesax.imshow(digits.data[i].reshape(8, 8), cmap='binary', origin='lower')ax.set_xticks([])ax.set_yticks([])ax.text(x=0, y=0, s=str(digits.target_names[digits.target[i]]), color='green')fig, axs = plt.subplots(10, 10, figsize=(12, 12))  # type: plt.Figure, np.ndarray
fig.subplots_adjust(hspace=0.1, wspace=0.1)
fig.suptitle('手写数字-使用GMM学习后生成')
for i, ax in enumerate(axs.flatten()):  # type: int, plt.Axesax.imshow(digits_new[i], cmap='binary', origin='lower')ax.set_xticks([])ax.set_yticks([])

这篇关于【Python】机器学习笔记10-高斯混合模型(Gaussian Mixture Model)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154699

相关文章

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N